SKAGAFJÖRÐUR CHURCH AND SETTLEMENT SURVEY

Hegranesþing: Geophysical Prospection, Coring and Excavation Interim Report 2017

Brian N. Damiata John M. Steinberg Guðný Zoëga Rita V. Shepard John W. Schoenfelder Douglas J. Bolender Photo on front page – Brian Damiata using the CMD Mini at Hegranesping.

Brian N. Damiata, John M. Steinberg, Guðný Zoëga, Rita V. Shepard, John W. Schoenfelder, and Douglas J. Bolender

Byggðasafn Skagfirðinga/Fiske Center for Archaeological Research, UMass Boston BSK 2018-204 / SCASS 2018-22

ACKNOWLEDGEMENTS

We thank the owner of Garður, Jón Sigurjónsson, for his kind permission and support of our work at Hegranesþing. John Steinberg, Brian Damiata, John Schoenfelder & Guðný Zoëga oversaw the work. Brian Damiata oversaw the geophysical data collection, John Schoenfelder oversaw the mapping and kite photography. Douglas Bolender georeferenced those images and other illustrations. Sean Deryck, and Kody Shugars along with Tyler Perkins, Rita Shepard, Douglas Bolender, Grace "Ceecee" Cesario helped core Hegranesþing. Rita Shepard, Tyler Perkins, Douglas Bolender, Grace "Ceecee" Cesario, & Josiah Wagener helped with the excavations. Josiah Wagener conserved the artifacts.

The Keflavík work is part of a larger survey of Hegranes. General permits for the survey of Hegranes and associated excavations were granted by The Cultural Heritage Agency of Iceland (MÍ201506-0056, MÍ201506-0058, MÍ201506-0059, MÍ201606-0051, & MÍ201606-0030). The National Museum Research Number for this work (and for most of Hegranes for the 2017 year) is 2017-19 while the Research Number for Hegranesping is 2017-12. The work was supported by the US National Science Foundation (PLR # 1242829, 1345066, 1417772 & 1523025) in a joint project of the Skagafjörður Heritage Museum and UMass Boston. The Icelandic Archaeology Fund also supplied significant support for the project. We are grateful to the Skagafjörður Commune for their ongoing and invaluable support. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the individuals and institutions who support this work. Products or instruments mentioned should not be construed as an endorsement.

SKAGAFJÖRÐUR HERITAGE MUSEUM

The Skagafjörður Heritage Museum is a center for research on local history and cultural heritage in the Skagafjörður region, North Iceland. It is affiliated with the National Museum of Iceland and its main exhibition at the old turf farm of Glaumbær is one of the most visited national heritage tourist attractions. The Archaeological Department of the museum was established in 2003 and engages in contract and research driven archaeology both within and outside the region. The core long-term research programs center on fundamental issues surrounding the settlement and early medieval church history of Skagafjörður and the North-Atlantic region with a focus on developing methodological and theoretical approaches to the geography of early Christian cemeteries. The department is involved in multifaceted interdisciplinary collaboration with Icelandic and international institutions and specialists. Its research portfolio includes bioarchaeology, early metal production, settlement studies, as well as the methodological aspects of archaeological surveying.

FISKE CENTER FOR ARCHAEOLOGICAL RESEARCH

The Andrew Fiske Memorial Center for Archaeological Research at the University of Massachusetts Boston was established in 1999 through the generosity of the late Alice Fiske and her family as a living memorial to her late husband Andrew. As an international leader in interdisciplinary research, the Fiske Center promotes a vision of archaeology as a multifaceted, theoretically rigorous field that integrates a variety of analytical perspectives into its studies of the cultural and biological dimensions of colonization, urbanization, and industrialization that have occurred over the past one thousand years in the Americas and the Atlantic World. As part of a public university, the Fiske Center maintains a program of local archaeology with a special emphasis on research that meets the needs of cities, towns, and Tribal Nations in New England and the greater Northeast. The Fiske Center also seeks to understand the local as part of a broader Atlantic World.

SKAGAFJÖRÐUR CHURCH AND SETTLEMENT SURVEY

The Skagafjörður Church and Settlement Survey (SCASS) seeks to determine if the settlement pattern of the 9th-century colonization of Iceland affected the development of the religious and economic institutions that dominated the 14th century. The research builds on the combined methods and results of two projects. One has focused on Viking Age settlement patterns. The other has been investigating the changing geography of early Christian cemeteries. Together, the research seeks to understand the connections between the Viking settlement hierarchy and the Christian consolidation.

Contents

Acknowledgements	iii
Skagafjörður Heritage Museum	iv
Fiske Center for Archaeological Research	v
Skagafjörður Church and Settlement Survey	vi
1.0 Abstract	1
2.0 Útdáttur (Icelandic Summary)	1
3.0 Introduction	1
3.1 Geology and tephra	4
3.2 Farmstead stratigraphy	6
3.3 Farmstead deposits identified in coring	6
3.4 Written sources	9
3.5 Previous archaeological work	10
4.0 Land Surveying and establishment of grids	13
5.0 Geophysical Survey	14
5.1 Site Conditions and Geophysical Targets	14
5.2 Frequency-Domain Electromagnetic Surveying	15
5.2.1 Equipment and Field Procedures	15
5.2.2 Data Processing	17
5.2.3 Results	18
6.0 Coring	21
7.0 Excavations	28
7.1 Test Pit 1	28
7.2 Test Pit 2	29
Conclusions	47
8.0 References	
Appendix A – Basic Principles of Frequency-Domain Electromagnetics	62
Appendix B- 2017 Coring Data	64

List of Figures

Figure 1. Air photo of Hegranes showing modern farm boundaries in yellow
Figure 2. Kite photograph of Lower Keflavík with tun boundary wall from (Zoëga and
Sigurðarson 2009) in yellow and defined Lower Keflavík area in black. The churchyard
associated with the western farm mound (Keflavík 1) is also shown
Figure 3. Bruun's 1898 map superimposed on landscape. Georeferencing is based on tún
walls
Figure 4. Using the CMD Mini Explorer with the boom oriented parallel to the direction of
transects
Figure 5. CMD Mini Apparent ground conductivity maps (mS/m) u. Left: C3 composite
image. Middle: C2 composite image. Right: C1 composite image319
Figure 6. In-phase component maps (ppt). Left: IP3 composite image. Middle: IP2
composite image. Right: IP1 composite image
Figure 7. Core 172761 First 40 cm showing midden staring at 30 cm bgs
Figure 8. Core 172761 showing the second barrel 40-80 cm presenting midden down to 60
cm
Figure 9.Core 172812 with floor from 28 to 43 (3 cm into next barrel)23
Figure 10.Core 172918 presenting burnt turf from 10-37 and dark ash layer (labeled floor)
from 37 to the end of the 40 cm barrel
Figure 11.second barrel of 173051 showing a thin peat ash floor burnt turf from at 54.5 cm.
Figure 12.second barrel of core 173648 showing a thin black ash floor with potential 950
tephra layer just above it at 50 cm bgs
Figure 13.core 73649 showing burnt turf from 20-45 (5 cm into next barrel)24
Figure 14.core 173666 with thin midden from 34 to 36 with H1 underneath at 38 showing
burnt turf from 20-45 (5 cm into next barrel)
Figure 15.core 173759 first barrel showing floor starting at 28 cm bgs and continues into the
next core (Figure 16)
Figure 16. Second barrel of core 173759 showing floor that began at 28 (Figure 15) going
down to 51 and another thin floor from 66 to 6924
Figure 17. Northern pre-1104 farmstead area in blue, with coring results superimposed on
orthophoto25

Figure 18. Southern pre-1104 farmstead area in blue, with coring results superimposed on
orthophoto
Figure 19. Southern 1104-1300 farmstead area in yellow, with coring results superimposed
on orthophoto
Figure 20. Location of test pit 1 with cores underlain by orthophoto
Figure 21. Location of test pit 1 with cores and CMD Mini Explorer C3 results (C3 color
scale can be found in Figure 5 left)
Figure 22. Location of test pit 1 with cores and CMD Mini Explorer IP3 results (IP3 color
scale can be found in Figure 6 left)
Figure 23. Location of test pit 2 with cores underlain by orthophoto
Figure 24. Location of test pit 2 with cores and CMD Mini Explorer C3 results (C3 color
scale can be found in Figure 5 left)
Figure 25. Location of test pit 2 with cores and CMD Mini Explorer IP1 results (IP3 color
scale can be found in Figure 6 left)
Figure 26. Location of test pit 2 with 1104-1300 cores and CMD Mini Explorer IP1 results
(IP3 color scale can be found in Figure 6 left)
Figure 27. Drawn profiles of test pit 1
Figure 28. Drawn profiles of test pit 240
Figure 29. Harris matrix of test pit 141
Figure 30. Harris Matrix of test pit 2
Figure 31. Photo from the south of the excavation of TP 1, showing bottom of 108 and top of
the probable wall [109]43
Figure 32. plan photo of excavation of TP 1, showing bottom of [111] midden and top of the
probable wall [109]43
Figure 33. photo of west wall of the completed excavation of TP 1. A patch of H1 can be
seen in the center, just above the leveling string (marked with white)44
Figure 34. Photo from the south of the excavation of TP2, showing bottom of [128]44
Figure 35. photo of east wall of the completed excavation of TP2. A patch of H1 can be seen
in the northeast
Figure 36. Photo of north wall of the completed excavation of TP2. A small patch of H1 can
be seen in the northeast above the aeolian deposit mixed with bone [127-130]45
Figure 37. Farm mound areas with excavations superimposed on orthophoto46
Figure 38. Farm mound areas with excavations superimposed on CMD Min-Explorer IP3
results

Figure 39. Northern pre-1104 Farmstead (Hegranesping 1) area in blue with o	cores on CMD
Min-Explorer IP3 results	49
Figure 40. Southern pre-1104 Farmstead (Hegranesping 2) mound area in blu	e with cores on
orthophoto.'	50
Figure 41. Southern 1104-1300 Farmstead (Hegranesping 2) mound area in g	yellow on CMD
Min-Explorer IP3 results	51

List of Tables

Table 1. Coring locations.	64
Table 2. Tephra layers in cores	68
Table 3. Stratigraphic layers in cores.	72
Table 4. Finds list	98

1.0 ABSTRACT

This report outlines the 2017 work at Hegranesping that built upon previous work at this complex and important site. The geophysical results, using the CMD Mini-Explorer, give a more detailed picture of the site than the 2016 Explorer results. The geophysical results suggest that there are substantial remains and important deposits that are not visible on the surface. The coring suggests these substantial and continuous remains are consistent with permanent continuously occupied Viking Age and pre-AD 1300 farmsteads. The first of the two 1x1m excavations suggest that the northern area was occupied during the settlement period and abandoned well before the AD 1104 volcanic tephra fell and is not associated with the visible churchyard. The second excavation suggests that the southern area, near the visible churchyard, was occupied after the settlement period and abandoned before the AD 1300 tephra fell and this occupation is likely associated with the churchyard. The combined results suggest that there may be a third area primary occupied 1104-1300 northwest of the visible churchyard, but more work is necessary to confirm this third occupation.

2.0 ÚTDÁTTUR (ICELANDIC SUMMARY)

Hegranesping

3.0 INTRODUCTION

Hegranesþing, a Viking and medieval assembly site (sometimes spelled Hegranesthing) is on the northern part of the island of Hegranes, in central Skagafjörður (Figure 1). The name of the island, and in turn the assembly site, is probably derived from the nickname of the supposed first settler of the region, Havardr hegri, translated into English as Havard the heron, (Pálsson and Edwards 1972:90). The Hegranesþing takes up part of the northern area of the farm of Garður, but its boundaries are unclear. Hegranesþing presents itself as a collection of booths, in the style typical of Icelandic assembly sites (Vésteinsson 2013; Vésteinsson, et al. 2004). Surrounding some of the southernmost booths is a tún boundary wall that encloses about 5550 m². A circular church wall intercepts the southeastern portion of the tún wall and encloses an additional 550 m². These walls appear to define the outer boundary of Hegranesþing, although many surface features, consistent with booths, can be identified well outside these walls.

The modern farm buildings of Garður are about 400 m to the south of the Hegranesþing's tún boundary wall. To the west of Hegranesþing is the delta of Austari-Héraðsvötn, that includes

Garðssandur & Flæðar. To the east is the farm of Keflavík, to the northeast is the farm of Utanverðunes, and to the north are the waters of Skagafjörður. The rivers that currently surround Hegranes, Austari-Héraðsvötn and Eystri Héraðsvötn are constantly shifting and Hegranes may have been connected to one side or another in the past, rather than being an island, as it is today (Zoëga 2015). Garður has been assigned number 444 based on its Jarðatal number (Johnsen 1847:277). The main farm area, where the modern buildings are located is place #1. Hegranesþing has been assigned place #2.



Figure 1. Air photo of Hegranes showing modern farm boundaries in yellow.

Figure 2. Kite photograph of Lower Keflavík with tun boundary wall from (Zoëga and Sigurðarson 2009) in yellow and defined Lower Keflavík area in black. The churchyard associated with the western farm mound (Keflavík 1) is also shown.

3.1 Geology and tephra

The geology of the region is characterized by Upper Tertiary basic and intermediate extrusive basalts (Feuillet, et al. 2012) overlain by morainic glacial till (Decaulne, et al. 2016). The area was deglaciated by 6100 yr cal.BP and then subject to uplift (Cossart, et al. 2014). Hegranes is probably a large rock drumlin, flyggberg, or rôche moutonnée formation (e.g., Neil 2002), with a long gradual south-side slope and a more sudden fall off on the north with many areas of plucked bedrock on that side of the island. The natural stratigraphy of the near surface of the region consists of a rapidly formed sediment and soil with intermixed tephra layers, along with gravel layers and lenses of glacial origin. The soil is a brown andosol that derives from aeolian sediments of volcanic origin, but is not the direct product of eruptions (Arnalds 2004, 2008; Arnalds, et al. 1995). The andosol is non-cohesive but has an extremely high water-retention capacity (Arnalds 2008).

The settlement and church survey relies heavily on tephra layers preserved in the soil. Skagafjörður has an early tephra sequence that allows for a fine-grained chronology of the changes in early settlement patterns (Larsen, et al. 2002). While tephra deposition can vary over small distances (Davies, et al. 2010) the basic tephra sequence is found throughout Skagafjörður and allows for a common dating system among farms and farmsteads (Þórarinsson 1977).

✤ Historic:

- Hekla A.D. 1766. A black tephra usually found in turf or in the upper 10 cm of the soil sequence (Kirkbride and Dugmore 2006; Thórarinsson 1967).
- Hekla A.D. 1300: A gray-blue to dark black tephra (Larsen 1984; Larsen, et al. 1999; Larsen, et al. 2002; Larsen, et al. 2001; Sveinbjarnardóttir 1992).
- Hekla A.D. 1104 (H1). This white or yellowish-white tephra is the most consistent in Skagafjörður (Eiriksson, et al. 2000) and is readily identifiable in both natural and cultural stratigraphic sequences.

- ✤ Landnám sequence (LNS):
 - Vj~1000 tephra. A blue to bluish-black layer whose source has not been determined but is likely to be either from a Grímsvötn and/or Veiðivötn eruption dated to approximately A.D. 1000 (Sigurgeirsson 2001). The layer was first suggested in two undergraduate theses (Jónsson 2005; Ólafsson 1985) and it has been proposed that this layer may be found in other areas (Aldred and Sigurgeirsson 2005; Lárusdóttir, et al. 2012). Preliminary analysis of the composition of volcanic glass shards by scanning electron microprobe (SEM) has identified a mixture of shards from both volcanic sources.
 - The mid-10th century layer (~950). This blue-green layer that is sporadically found is currently an un-sourced and undated layer that lies between the LNL and Vj~1000. There are several potential candidates for this layer, including the large eruption of Eldgjá dated to A.D. 934 ±2 (Fei and Zhou 2006; Hammer, et al. 1980; Thordarson, et al. 2001) or perhaps a few years later (Oppenheimer, et al. 2018). It could also be an A.D. 933 ±6 green tephra layer identified in the Lake Mývatn area from Veiðivötn, termed V-Sv ~950 (Sigurgeirsson, et al. 2013). Preliminary analysis by SEM has identified shards primarily from the Grímsvötn source.
 - "Landnám" or "settlement" layer (LNL, LTL, also designated as 871). The layer is so-named for its association with the earliest settlements in Iceland (Dugmore and Newton 2012)) and is dated to A.D. 871 ±2, (Grönvold, et al. 1995), but could be dated to A.D. 877±4 (Schmid, et al. 2017; Zielinski, et al. 1997). The tephra originates from the Vatnaöldur fissure swarm associated with the Torfajökull and Bárðarbunga volcanos (Dugmore and Newton 2012; Larsen 1984). In general, this layer consists of two distinct tephras–an olive-green tephra overlying a white tephra. However, in Skagafjörður, only the green portion is present (cf. Hallsdóttir 1987). In many cases this layer and surrounding layers of the LNS are tightly spaced in a brown organic rich soil matrix associated with the environmental changes of colonization.
 - Black tephra below the LNL (K800). The earliest tephra in this sequence is a dark black layer probably from the Katla volcano, but is not well dated (Wastegard, et al. 2003). It is usually labeled K800 in profiles.
- Prehistoric:

- Hekla 3 (H3). A thick (generally 2-3 cm) white or whitish-yellow tephra dating to about 950 B.C. (Dugmore, et al. 1995).
- Hekla 4 (H4). A thick (generally 1-3 cm) white or yellowish-white tephra dating to about 2300 B.C. (Eiriksson, et al. 2000).

3.2 Farmstead stratigraphy

Chronological phasing of farmstead sizes primarily relies on two tephra layers: the white Hekla A.D. 1104 (H1) and the dark Hekla A.D. 1300. These layers are the most commonly found in cores and often the easiest to identify of the historical tephras. H1 is presented twice as often as Hekla A.D. 1300. Using these tephra layers to date cultural deposits allows for the chronological phasing of farmstead sizes and for farmstead sizes to be compared across contemporary temporal horizons. Their presence also allows for the identification of changes in the size of individual farmsteads. Other tephra layers are used to help identify the overall stratigraphic sequence in the soil cores and to associate specific layers with historical periods. Deposits categorized by these temporal phases are based on whether or not they contained "farmstead" material. The resulting chronology allows for the estimation of farmstead size for three primary periods:

- Pre-A.D. 1104
- A.D. 1104-1300
- Post-A.D. 1300

3.3 Farmstead deposits identified in coring

To determine the location and area of farmstead deposits, the results of cores were divided into three simple categories: "yes," "no," and "maybe" based on the presence of cultural material above or below specific tephra layers (Steinberg, et al. 2016). Small and infrequent anthropogenic inclusions in soils – such as ash, charcoal, and bone – are common near farmsteads and other activity areas. These are good indicators that an activity area or domestic site may be nearby but we do not count infrequent inclusions as contributing to the areal extent of the farmstead. Higher concentrations of anthropogenic inclusions, midden deposits, turf, and floors are included in farm mound deposits.

For the "Pre-A.D. 1104" period a "Yes" cores presented cultural deposits below the H1 (or an earlier) tephra. "Maybe" cores indicated early cultural deposits, as determined by depth or association with another tephra such as the 1766 or 1300 tephra, but without the presence of a clearly defined H1 tephra layer. The absence of the H1 in a context of a cultural deposit is mostly because it was not preserved or the core did not penetrate deeply enough to encounter it (i.e., refusal within more recent deposits). A "no" core resulted when no cultural layers were present in the core or where there was no cultural layer below the H1. Almost all "no" cores had the H1, or some other tephra that allowed for the assessment of this important negative evidence. The same logic was used for the "A.D. 1104-1300" and the "Post-A.D. 1300" farmstead distributions based on coring.

For the purposes of the coring survey, farmstead or farm mound deposits include:

- Turf deposits: any evidence for a turf structure, including collapsed or levelled turf, are considered evidence of farm buildings. The organic content and percentage of soil in turf deposits is variable. Sometimes tephra layers are present in turf, which can provide a terminus post quem (TPQ) date for the deposit. Dating turf deposits is not without difficulties. As a rule, a turf farmstead deposit containing a tephra layer is a positive farm mound location (yes) for the period(s) after the latest identified tephra. In the absence of in situ tephra, the rest of the deposit is characterized as a potential farm mound (maybe). For example, in a core with turf including what was identified as the H 1300 tephra as the only "farmstead deposit" would be coded as "Yes" for post-1300 but also "Maybe" for the pre-1104 and 1104-1300 phases because of the inherently uncertainty of a field identification of a single dark tephra.
- Low density cultural layers (LDC): defined by anthropogenic inclusions amounting to 10-50% of the soil matrix. These are assumed to result from indistinct and extensive depositional events that suggest regular activity typical of farmsteads or other farm production areas. Sometimes this deposit has a "mixed" character.
- Middens: defined by anthropogenic inclusions amounting to more than 50% of the soil matrix that suggest the regular deposition of household or production area waste. Middens are the result of distinct and intensive depositional events associated with purposeful disposal. In both LDC and Midden layers that are punctuated by tephra layers, for purposes of farm mound dating, the deposits are assumed to be continuous,

occurring immediately before and after the date of the tephra deposition. For example, in a midden deposit with only H1 present, surrounded on either side by midden, both "Pre 1104, and "1104-1300" would be positive ("yes") while "Post-A.D. 1300" would be "maybe."

 Floor: characterized by dense, compacted, and/or greasy cultural layers indicative of floors, extramural activity areas, or areas of intense deposition of organic materials. Sometimes floors are distinct fine-grained black ash. These floor deposits are often thin but are very distinct.

For a farmstead to be defined, at least one core had to have some evidence of human burning or other unambiguous evidence of human occupation that would be distinct from an animal only outbuilding. A farmstead's perimeter for a given time period was determined by the results of the plotted cores taken around a farmstead site. The perimeter was plotted half way between a "yes" and "no" core, or on a "maybe" core between a "yes" and "no" core. The continuous area within the perimeter was calculated to produce the maximum possible area of a farmstead.

Most cores with farmstead deposits are clustered together allowing for the definition of a single contiguous farmstead area. However, isolated areas with multiple cores containing farmstead deposits that are some distance removed from the main farmstead area are often identified in the coring. A 30-meter, multiple core rule was applied to these areas to determine whether these islands should be included in the main farmstead boundary, generated an additional measured area of the same farmstead, or were ignored. First, islands were only identified based on multiple neighboring cores that had farmstead deposits. Single isolated cores with farmstead deposits were not considered islands. Second, islands had to have a midden deposit present in at least one of the cores. Isolated areas of turf or LCD, without nearby midden, floor, or distinct cultural deposits, were not defined as farmstead islands. If the islands had a sterile interstitial area that separated the island from the main farmstead area by less than 30 m, the main farmstead boundary was extended to include the island. Separate enclosing boundaries were generated for islands that had sterile interstitial areas of more than 30 m from the main farmstead area. The area of these isolated islands was then added to the area of the main farmstead. Isolated farmstead deposits beyond 100 meters from the main farmstead are counted as separate named farmstead areas.

3.4 Written sources

The Earliest mention of Hegranesping is in The *Saga of Grettir the Strong* where it was described having booths separated from some of the more public areas:

... [T]he Hegranes Assembly came around in the spring. A great gathering from all the districts that the assembly covered attended. They spent much of the spring engaged in both legal cases and festivities, because at that time there were many men in the districts who liked celebrating.

[Grettir] arrived at the assembly as people were living the Law council on their way back to their booths...

Some young men said that the weather was fine and pleasant and that it would do them good to arrange wrestling matches and entertainment. Everyone agreed that this was a good idea and went to sit down near their booths... (Scudder 1997:160)

Hegranesþing is also mentioned in the *Saga of Hacon* where the attempted swearing of an oath seems to be adjourned from Hegranesping to a later date at the Althing (Þórðarson 1894).

Between 1271 and 1281 law books divide the Hólar bishopric into four assembly regions, specifically specifying Hegranesbing as one of them (Sigurðsson 2012). Hegranesbing is also mentioned in the *Lárentíus Saga* (Hafliðason 1890), a saga written down about 1530 and describing the events of AD 1301. Hegranes "moot" is described as the location where Berg the Wren thought he killed Krók-Álfur, a Norwegian official, who was presenting writs from the King of Norway to the assembled people. According to the story, Krók-Álfur was appointed to two quarters of Iceland and at both Oddeyri and Hegranes assemblies, the people accosted him.

At Hegranesping:" he was so scared that he hardly knew where to turn for refuge: the vagabond beggars whooping and hollering, smote their shields against him; he was only saved from slaughter at their hands by Lord Thórd from Mödruvellir and other lords having him covered by their shields. (Hafliðason 1890:27)

In 1374 Garður is listed in the Hólar land inventory as belonging to that bishopric (Pálsson 2010:39) but Hegranesþing is not specifically mentioned in that document. Along the same lines, medieval documents from about that time mention churches and chapels on nearby farms (including Ás, Keflavík and Utanverðunes), but not at Garður (Sigurðardóttir 2012:31). In 1713 Garður was worth 20 hundreds (Magnússon and Vídalín 1930:64) and no sub-farms are mentioned in the listing. However, there is a reference to an abandoned weaning fold

(stekkur) with field walls around it. Magnússon and Vídalín (1930) suggest that it might have been a small subsidiary farm occupied by freed slaves (þrælagerði). Oddly enough, they are told that the site of the meeting place is lost, but that it might be north of "Garðar" (Friðriksson, et al. 2004:39). In the second decade of the 19th century, Finnur Magnússon mentions that ruins of the assembly site are visible on Hegranes but no specific location is given (Rafnsson 1983). According to the later Jarðatal, Garður was worth 20 hundreds (Johnsen 1847) and there is no mention of outbuildings or subfarms, let alone an assembly site.

3.5 Previous archaeological work

The earliest known scientific investigations at Hegranesping is that of the philologist and cultural historian Kristian Kålund between 1872 and 1874 (Kålund 1892:78) who identifies the spot on Garður as being the assembly place. In 1886 Sigurður Vigfússon describes 48 different structures at Hegranesping (Vigfússon 1892). Of those structures, he associates 17 with the weaning fold, the specific location as that of the Hegranesping of Grettir the Strong, and with the place name Litli-Garður. In 1896 Daniel Bruun noted even more structures (Bruun 1897:226) and he produced a map in 1898 (Bruun 1899). In 1974, the National Museum investigated a booth impacted by road construction (Ólafsson and Snæsdóttir 1975). The stone-footed building did not have a floor and only a few stains of charcoal, burnt bones, and peat ash in the deposit. Six postholes filled with sand in the center of the building were identified.

In 2003 as part of the Assembly Project, a surface survey and two test excavations were conducted at the site of Hegranesping (Friðriksson, et al. 2004). Excavation 1 revealed the presence of a supposed early Christian cemetery from about the time of deposition of the 1104 (H1) tephra layer. In particular, the visible circular enclosure wall of the cemetery was mostly from the time after the H1 tephra fell. In addition, the cultural layers identified were not associated with the cemetery but from a much later smaller farmstead, that was abandoned well before the 1766 tephra fell. Excavation 2, into a booth, revealed turf foundation walls constructed between 1104 and 1766, but closer to 1104. Although there were animal bones and bits of charcoal, no cultural layer was encountered.

In 2009, three test trenches were dug as part of the Skagafjörður Church Project. Excavation 1 of the prior Assembly project was expanded and deepened, revealing four graves. The two

graves that had been identified in 2003 were fully excavated and the skeletons removed for further analysis. Another test trench was placed about 8 m to the south of test trench 1, just east of a presumed church ruin. The trench revealed the cut of a fifth grave (Zoëga 2009). While the two graves excavated were clearly dug through the 1104 tephra, two other burials were overlain by that tephra, suggesting that the cemetery was in use before and after the tephra layer fell. The third test trench confirmed that the cemetery's wall that is visible on the surface post-dates 1104 and most likely represents a 12th century enlargement of the cemetery. The cemetery had been landscaped and leveled with turf, both before and after the 1104 tephra fall, the later landscaping episode probably associated with the building of the cemetery wall. The cemetery remains are consistent with a large number of early Christian farmstead cemeteries that are found in the Skagafjörður region (Zoëga 2014, 2015). Thus, the functional, temporal, and spatial relationship between the cemetery and the assembly is unclear, but the cemetery is potentially associated with a nearby farmstead.

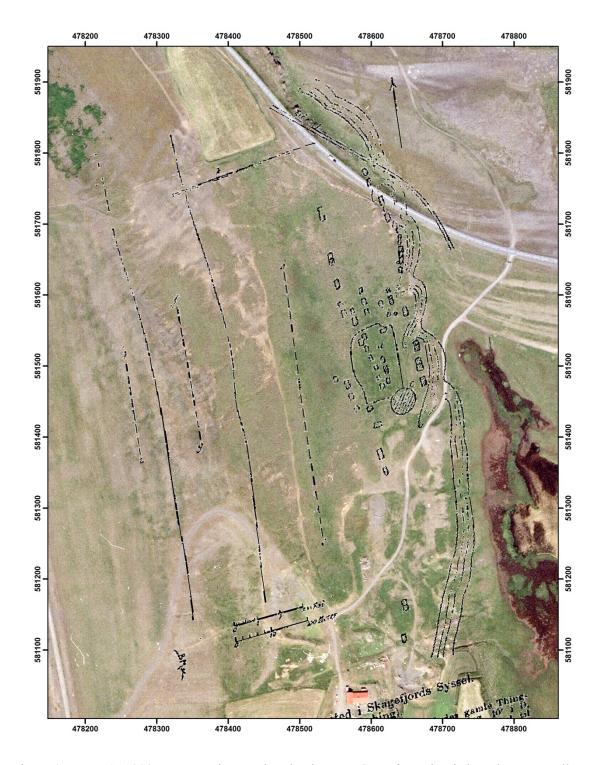


Figure 3. Bruun's 1898 map superimposed on landscape. Georeferencing is based on tún walls.

In 2013 and 2015, as part of this project, a series of geophysical surveys were conducted at Hegranesping (Damiata, et al. 2016). The work in 2013 was a preliminary part of the SCASS project to investigate and analyze the use of geophysical methods to locate and image early Christian cemeteries in Iceland, while the work in 2015 was part of the basic SCASS work

described in the front matter. This work indicated that the northern part of the cemetery at least was densely packed with burials. High ground conductivity readings in the center of the visible tún enclosure (478610E 581500N) suggests the possible presence of a long-term domestic occupation (Damiata, et al. 2016). The broad anomaly of elevated readings is qualitatively different from the well-defined smaller "booth" anomalies as seen in other parts of the site. In 2016, a geophysical and coring survey took place, and two distinct areas of habitation, before and after 1104 were defined (Steinberg, et al. 2017). This work is a follow up on this earlier work.

4.0 LAND SURVEYING AND ESTABLISHMENT OF GRIDS

All land-survey data were collected based on the ISN93 coordinate system. Core locations were determined in several ways. For only a few cores that were taken well away from ruins, the internal GPS receiver in the iPhones or iPads that were used to record the coring data was used. Within Lower Keflavík, most cores were collected on 10 x 10 m grid that were located with the Topcon GPT 9005A total station. Judgmentally placed cores were originally located with an iPad and then refined by either a Topcon Hiper SR DGPS or a Trimble Geo XH which was equipped with a Zepher antenna in order to improve upon the accuracy of the locational data.

The geophysical grid was initially established using a Topcon Hiper SR DGPS using the ISMAR differential station at Stoð ehf in Sauðárkrókur, which yields about 1 cm horizontal accuracy and 2 cm vertical accuracy. The original GPS points were re-measured with the Topcon GPT 9005A auto tracking pulse total station to ensure consistency across different total-station set ups. The corner points of the survey area and internal grids at intervals of 50 \times 50 meters were flagged using the total station. Additional flags were laid out at intervals of 10 \times 10 m using fiberglass measuring tapes that were stretched between the stations established by the DGPS. The eastern and western baselines of the entire grid were flagged at 1-m intervals using alternating colors. Additional lines of alternating flags running east to west were laid out 10 m apart to help guide the surveying.

5.0 GEOPHYSICAL SURVEY

The use of geophysical methods in support of archaeological investigations is widely established (e.g., Gaffney and Gater 2003; Linford 2006). For the 2017 study, frequency-domain electromagnetics (FDEM) was applied over substnatial portions of the assembly site. Summarized below are the geophysical methodologies that were used. Appendix A provides a general overview of FDEM operations.

5.1 Site Conditions and Geophysical Targets

The natural stratigraphy of the region consists of soil with intermixed tephra layers, along with gravel layers and lenses of glacial origin. At Hegranesping, the ground surface is hummocky due to a combination of thufurs or frost heaves (e.g., Grab 2005) as well as the remnants of archaeological remains. A limited excavation within the cemetery proper yielded fill layers overlying a gravel deposit below which two well-preserved skeletons were revealed (Zoëga 2009).

There are several potential geophysical targets associated with the Viking Age archaeological remains at Hegranesbing. For this survey, the most important targets are usually found in a central farmstead. The most common include: longhouses, middens, barns, pit houses, outbuildings, and churches. Other features, that are not necessarily roofed buildings, include animal pens, seasonally occupied booths, and boundary walls - which can, less frequently, be identified using maps of geophysical readings. Geophysical techniques are most effective for predicting the location of buried archaeological structures and deposits without surface sign where the deposits are substantial and are of a single component. Furthermore, the archaeological remains must have physical properties that make them distinct from the surrounding environment. Finally, the geophysical techniques work best where the remains have a will-defined interface with an original surface. Generally, geophysical techniques are contraindicated when the remains are ephemeral, or in disturbed contexts, or part of a complex palimpsest-like deposit.

The two main targets for the geophysical survey are long houses and churchyards. Long houses are distinguishable by their geometry, with two slightly bowed 2 m thick turf walls that are between 4 and 8 m apart. Thus far, we have not identified a central fireplace or hearth with geophysical techniques, but these fire features are a key part of longhouse structures.

Other archaeological remains (e.g., booths, walls) are expected to consist of compacted turf blocks overlying a stone foundation. In some cases, the turf will be placed directly on the ground or on a prepared surface. From a geophysical perspective, measurable contrasts between stones and soil and between compacted turf and soil are anticipated (i.e., contrast in apparent ground conductivity and in-phase for FDEM).

In general, churchyards consist of a small central church that is surrounded by a cemetery, which is enclosed by a circular wall. The churches are often only 3×4 m in size and constructed of wood with stone foundation. The wall is typically between 15 to 30 m in diameter and composed of compacted turf overlying a stone foundation or gravel base. Graves may be found throughout the enclosed cemetery including under the church.

Graves can be a difficult geophysical target to detect but differential fill, breaks in soil stratigraphy, and the interfaces along the sides and bottom of grave shafts might be detectable (Bevan 1991; Conyers 2005, 2006; Doolittle and Bellantoni 2010; Jones 2008; King, et al. 1993). In some instances, the direct detection of skeletal remains is possible (Damiata, et al. 2013; Damiata, et al. 2017; Schultz 2008; Schultz and Martin 2011).

5.2 Frequency-Domain Electromagnetic Surveying

In 2013, an FDEM survey was conducted over a 50×50 m grid, which was primarily intended to investigate the churchyard. In 2015, an expanded reconnaissance survey was conducted over areas to the south, north and west of the churchyard—including most of the homefield. One objective of this work was to directly compare geophysical results (Damiata, et al. 2016) to the exposed archaeological remains (e.g., Figure 3). In 2016, a third FDEM survey was conducted, which covered a portion directly to the north of the expanded reconnaissance survey that was conducted in the previous year (Steinberg, et al. 2017). Here we report on the results of the forth FDEM survey undertaken in 2017 with the CMD Mini-Explorer.

5.2.1 Equipment and Field Procedures

The FDEM surveys were conducted using a GF Instruments' CMD Mini-Explorer (Figure 4). The CMD Mini, like the larger CMD explorer operates at 30 kHz over three separate dipole lengths. By increasing dipole length, a greater volume and depth of soil can be sensed. The CMD mini Explorer has a single TX located at one end of the unit and three separate RX

located at dipole lengths of 0.32, 0.71 and 1.18 m which provide depths of interrogation of approximately 0.5, 1.0 and 1.8 m, respectively, relative to the level of the sensors (Bonsall, et al. 2013). For the 2017 CMD Mini survey, the unit was operated in the vertical dipole mode with the boom carried at foot level oriented parallel to the direction of the east-west transects that were walked unidirectinally from west to east along contiguous transects that were separated by 0.25 m. The sampling rate was set to 10 Hz (i.e., 10 samples per second), which yielded a spacing between measurements of ~0.06 m while walking at a normal pace. The surveying was guided by color-coded PVC flags that were placed every 10 meters along transects separated by 1 m. The survey took place over four days and no appreciable rain fell between surveys.

Both quadrature phase (bulk ground conductivity - C) and in-phase (related to bulk ground magnetic susceptibility - IP) components were recorded for each of the three dipole lengths (i.e., six simultaneous readings were recorded for each "measurement"). Maps and figures of FDEM readings are labeled with the component and dipole length. Thus, C1 and IP1 present quadrature phase and in-phase data from the shortest dipole length, and shallowest depth of interrogation while C3 and IP3 present quadrature phase and in-phase data from the longest dipole length, and greatest depth of interrogation.

Figure 4. Using the CMD Mini Explorer with the boom oriented parallel to the direction of transects.

5.2.2 Data Processing

The raw data were initially corrected to properly adjust for the starting and ending locations of each transect. As a check on quality control, the average spacing of measurements for each fiducial segment along a given transect (i.e., every 10 m) was calculated to ensure the spacing between measurements was approximately 0.07 m or less. The data were then processed using Oasis Montaj mapping software to produce color-contoured maps. The four days of survey were processed individually and three of them were later combined into a single dataset. The merging of these data sets required slight color adjustments to create single images with minimal mismatch at the seams. The CMD Mini-Explore data set over the visible circular churchyard was not combined, but still has a similar color range. The processed data were also archived into a database for future use.

5.2.3 Results

Figure 5 and Figure 6 present the composite results for apparent ground conductivity and inphase component, respectively. The FDEM data provide detailed maps that reflect changes in both surficial topography and subsurface material properties. The results for C1 and IP1 provide the best correspondence to the partially visible remains, which include enclosure wall of the churchyard, boundary wall of the homefield, and booths within and outside of the homefield.

With respect to apparent ground conductivity and sensor 3 (Figure 5 left), archaeological features that have relatively pronounced topographic variations (e.g., tún wall) present themselves as a high-low-high (i.e., red-blue-red) responses. This is attributed to elevational variations of the RX and TX as the feature is approached and crossed over, and to a lesser extent to the distances to buried stone or bedrock. However, features with little or no topographic expression (e.g., many of the booths) have responses that are more influenced by buried rock and appear as mainly low apparent ground conductivity (i.e., blue). This is the case for some of the booths to the northeast in the vicinity of the earliest excavations at Hegranesping. All of those excavations suggest that the structures and walls have a substantial stone component that is consistent with the limited archaeological work that has taken place (Friðriksson, et al. 2004; Ólafsson and Snæsdóttir 1975; Zoëga 2009). As often the case, several of the blue lines in C3 are associated with turf walls. For the CMD Miniexplorer surveys that were conducted, combined with the results of the coring at this site, the pink in the IP3 component is sometimes associated with dense and thick areas of peat ash, charcoal and floors. That being said, high IP 3 values are also associated with the presence of rocks (Damiata, et al. 2016).

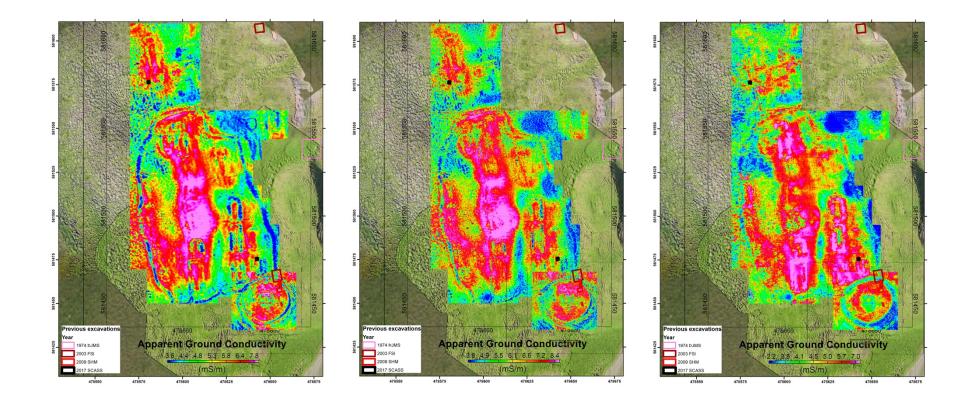


Figure 5. CMD Mini Apparent ground conductivity maps (mS/m) u. Left: C3 composite image. Middle: C2 composite image. Right: C1 composite image3.

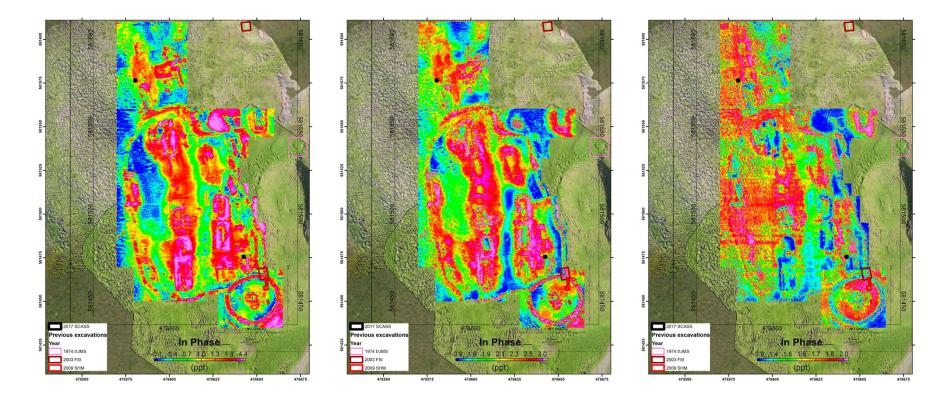


Figure 6. In-phase component maps (ppt). Left: IP3 composite image. Middle: IP2 composite image. Right: IP1 composite image.

6.0 CORING

174 cores were taken at Hegranesping during the 2017 season. Those cores encountered 177 tephra layers (about 1.0 tephra layer per core) and 795 specific stratigraphic layers (about 4.6 layers per core). The 2017 cores taken in Hegranesping bottom out at an average of 74.8 cm (SD=25.9) below the ground surface onto gravel (Table 1). For context, the overall average for cores for the SCASS survey is 62.6 cm (SD=94). Of these 174 cores, 32 did not have any cultural remains at all (Table 3). Fourteen cores had distinct floor deposits while 36 had district midden deposits, but, unusually, only one core (172779) had both floor and midden deposits. Almost 72.4% of the cores had turf deposits, and those turf layers had an average thickness of 37.7 cm.

Of these 174 new 2017 cores, there were 2 instances of the 1766 (both of which had the 1300 tephra) and 12 instances where the1300 tephra was presented. Conversely, 45 presented the H1 (25.9%) and 71 (40.8%) presented the H3/H4 tephra (Table 2). Eight cores encountered an in situ dark tephra from between the H1 and the time of settlement, four of them identified in the field as the "1000" layer, while four of the black layers were identified as the ~950 tephra. In no 2017 Hegranesping core were two dark tephra from between the H1 and the time of settlement the H1 and the time of settlement identified. Thirty-two of the 2017 cores indicated pre-1104 occupation, and only 2 indicated 1104-1300 occupation.

Many of the cores showed thick floor deposits (e.g., Figure 9, Figure 10, Figure 11, Figure 12, Figure 15, and Figure 16) substantial midden deposits (e.g., Figure 7, Figure 8, and Figure 14) and profiles consistent with burnt turf (e.g., Figure 10, Figure 13, and Figure 14). These specific deposits are entirely consistent with typical farmstead deposits seen elsewhere in Hegranes. Interestingly, there were no sequences of thin layers of ash, interspersed with aeolian deposits encountered in any of the cores, which is strange since clearly a substantial portion of the archaeology is entirely consistent with temporary booth structures seen at other assembly sites (Sanmark 2017; Vésteinsson 2013; Vésteinsson, et al. 2004). These thin alternating layers are clear in some of the Gásir deposits (Roberts 2006:13). While strange, this missing evidence of abandonment and reoccupation in the cores is consistent with the earlier excavations of temporary structures at Hegranesbing which suggest that trampled earthen floors are common (Friðriksson, et al. 2004; Ólafsson and Snæsdóttir 1975) and these deposits would probably not be identified in the standard JMC backsaver cores.

The deposits, when explored using coring transects (Figure 17, Figure 18, and Figure 19), appear to be substantial and consistent over 10's of meters, rather than associated with various and sundry refuse pits and pit-hearths associated with outdoor cooking seen at other seasonal sites such as Gásir (Harrison, et al. 2008; Roberts 2003, 2004, 2006; Vésteinsson 2008). That being said, it is possible that the deposits cored are not sheet middens and other continuous deposits but associated with a series of pits and specialized temporary industrial structures that appear to be continuous in cores, or that the pits are so numerous and so substantial that the deposits appear contentious. The general character of the cores does not suggest that an unusual number of pits were dug past the H3 tephra later and then filled with refuse. Of the 320 cores taken in 2016 and 2017 at Hegranesping, 57 were considered to have midden deposits and 20 were interpreted as having floor deposits. Of the cores with midden 35% also had an intact H3 deposits below it (n=20), and 50% of the cores with floor had intact H3 deposits below them (n=10). The midden percentage at Hegranesping is lower than the SCASS average of 41% of cores with midden that that have a preserved H3 below but the percentage of cores with floor and an intact H3 at Hegranesbing is higher than the 41% of total SCASS cores with floor and an intact H3. (Of the 7484 cores taken since 2013, 1142 cores had midden and 470 of those cores with midden had an intact H3 while 121 cores had floor and of those 50 cores presented both floor and an intact H3.) These numbers suggest that the midden and floor deposits at Hegranesping are largely consistent with other farmstead deposits, in terms of being placed in pits or other environments where the subsoil is disturbed.

Figure 7. Core 172761 First 40 cm showing midden staring at 30 cm bgs

Figure 8. Core 172761 showing the second barrel 40-80 cm presenting midden down to 60 cm

Figure 9.Core 172812 with floor from 28 to 43 (3 cm into next barrel)

Figure 10.Core 172918 presenting burnt turf from 10-37 and dark ash layer (labeled floor) from 37 to the end of the 40 cm barrel

Figure 11.second barrel of 173051 showing a thin peat ash floor burnt turf from at 54.5 cm.

Figure 12.second barrel of core 173648 showing a thin black ash floor with potential 950 tephra layer just above it at 50 cm bgs.

Figure 13.core 73649 showing burnt turf from 20-45 (5 cm into next barrel)

Figure 14.core 173666 with thin midden from 34 to 36 with H1 underneath at 38 showing burnt turf from 20-45 (5 cm into next barrel)

Figure 15.core 173759 first barrel showing floor starting at 28 cm bgs and continues into the next core (Figure 16)

Figure 16. Second barrel of core 173759 showing floor that began at 28 (Figure 15) going down to 51 and another thin floor from 66 to 69.

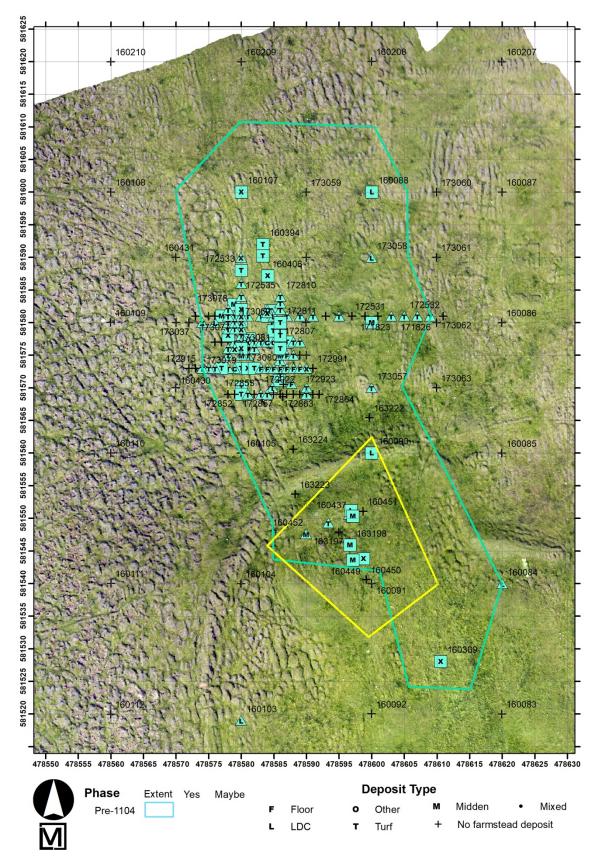


Figure 17. Northern pre-1104 farmstead area in blue, with coring results superimposed on orthophoto.

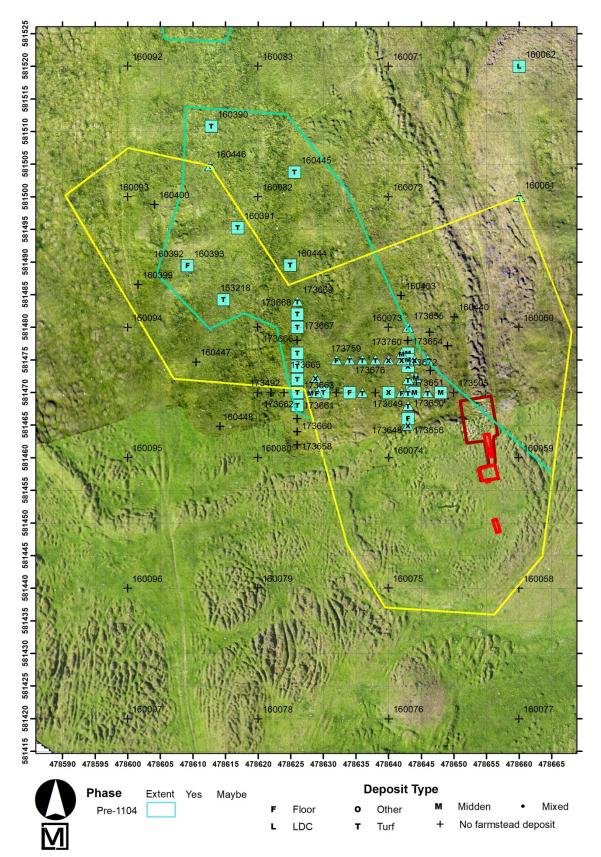


Figure 18. Southern pre-1104 farmstead area in blue, with coring results superimposed on orthophoto.

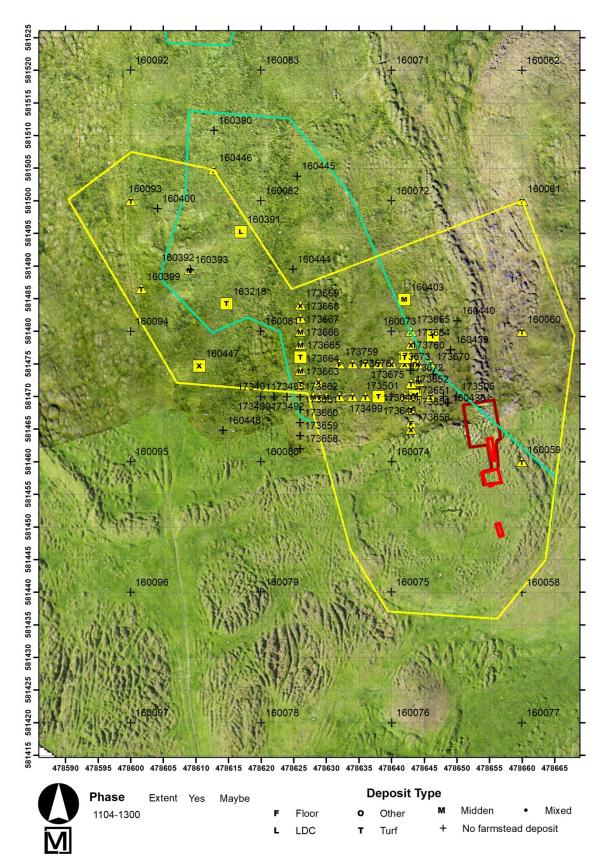


Figure 19. Southern 1104-1300 farmstead area in yellow, with coring results superimposed on orthophoto.

7.0 EXCAVATIONS

Two test pits were excavated at Hegranesping during the 2017 field season. The idea was to place the excavations in middens that appeared to be associated with nearby structures, although the complex nature of the site makes the identification of structures difficult.

7.1 Test Pit 1

Test pit 1 (TP1) was placed based on a combination of visible surface remains, geophysical results, and coring. The coring in this northern area suggested a complex distribution of features with turf, midden, floor, and LDC with relatively clear edges defined by cores without any cultural material (Figure 20). The conductivity readings suggested two north-south parallel lines of turf (pink in Figure 21) while the IP readings suggested a broad smear of cultural activity with a substantial floor (pink in Figure 22). In order to attempt to avoid the internal parts of a poorly preserved, but perhaps very early structure, the pit was placed at the western edge of the potential smear of cultural material where tephra preservation seemed to be very good.

The sequence at TP1 (Figure 32) consisted of an aeolian deposit [101-102] over construction turf [103-108] that ended on a stone foundation [109] that was on top of a pink peat ash midden [110-114] that rested on a second lower deposit of turf [115-117] that rested on aeolian deposits (Figure 27). The actual sequence is only complicated by a turf wall and foundation (Figure 29). Context [101] was a standard root mat and aeolian soil with both the AD 1300 and 1104 tephras close together. The root mat rested on a typical sterile aeolian deposit [102] suggesting that the lower cultural deposits were abandoned well before the 1104 tephra fell. In sterile cores at Hegranesbing where both the 1104 and 1300 tephras were present, 18-15 cm separated the two tephra layers, but in this location, the separation was even less. Context [103] was primarily turf collapse which was on top of [104] which contained streaks of H3 mixed in. The turf was taken off in fairly fine layers so the turf deposits [104, 105, 106, and 107] are all similar and should be examined as a unit together, which might include the firmer [108] and the stone foundation of the turf wall [109], which was not excavated. Contexts [106 & 107] contained several pieces of metal (Table 4). The turf collapse bottomed out on a midden deposit (Figure 31). While [109] was not excavated, the sidewall below 109 made it clear that the wall was constructed on top of an early midden

deposit. The first excavated midden deposit] [110] was taken as a thin slice because it bottomed out on a dark green tephra that was interpreted as the ~950. The rest of the excavated midden deposit was also taken in relatively thin slices that included [111, 112, 113, and 114]. The midden seemed to be composed primary of pink peat ash and contained a remarkable amount of well-preserved animal bones. Context [111] contained several pieces of worked bone, including pieces of a comb (Table 4). A second lower turf deposit, below the midden was also excavated in thin slices [115, 116 & 117] and was resting on a very thin aeolian deposit [118] which capped a distinct LNS. The LNS rested on another aeolian deposit [119] which was on another aeolian deposit [120] which contained a substantial but partially truncated in situ H3 tephra layer.

The sequence of TP1 suggests that the lower turf deposit may be collapse from a very early structure, so the main midden deposit in this sequence is later but potentially mostly before the ~950 tephra fell. The turf wall and stone foundation must have been constructed after ~950 and well before 1104. The sequence from this potentially very early farmstead does not show any signs of abandonment during its limited occupation. We assume that the midden profiled in TP1 is related to the substantial floor 4 m to the southeast (Figure 22). We suppose that the rest of a structure, with a long axis that runs north northwest, was disturbed by the construction of the tún wall. This farmstead may continue on the south southeast side of the tún wall, where it is overlain by a small distinct post 1104, pre 1300 occupation (Figure 38).

7.2 Test Pit 2

Test Pit 2 (TP2) was placed based on a combination of visible surface remains, geophysical results, and coring. Core 173657 presented a 12 cm thick midden with 10 cm of aeolian deposit between it and a 7 mm thick H1. The geophysics from this location suggested a structure with a south southeast running long access that apparently ended just a few meters north of the visible churchyard (Figure 24). The well-defined structures with probable stone walls to the west of TP2 (pink in Figure 25) are probably booths with almost perfect north-south orientations. While most of the deposits are pre-1104, there are some midden and turf deposits that are clearly 1104-1300 (Figure 26) in this area.

The sequence is straightforward, other than a post or stake hole [131] with a series of turf deposits that overlie an aeolian deposit mixed substantial bone inclusions (Figure 28)—

29

entirely consistent with seasonal feasting. Below a dark patchy charcoal midden is a patchy line LNS in an aeolian deposit that is on top of glacial gravel. The root mat [101 was on top of a patchy 1300 tephra layer (Figure 30) that was on top of a relatively sterile aeolian layer [121]. The next thee contexts [122, 123, & 123] Is a mixed turf, charcoal and bone deposit (Figure 35 & Figure 36) that rests on a patchy H1 that below a more sterile aeolian deposit [125]. While there are only patches if H1 visible in the sidewall, during excavation, the layer, while uneven, was clearly visible in several locations at the [125]-[126] interface.

The aeolian deposit and H1 is on top of the beginning a substantial midden. The top midden layer has more peat ash [126] and the next four midden layers [127, 128, 129, & 130] are mostly dark black with large mottled patches (Figure 34). Context [129] was a ridge of midden deposits, perhaps a single depositional event of ash, and does not appear in any of the side walls. Appearing just below the beginning of the midden [126] was a small stake hole [131] that extend through the four midden layers [127, 128, 129, & 130] filled with peat and charcoal midden and small unburnt wood deposits. The midden deposit was on top of a aeolian deposit with noticeable gravel [132] that contained a dark tephra interpreted in the field as the ~950 but could also be the 1000 tephra. Below this aeolian deposit was a glacial sand and gravel deposit [133].

On a methodological note, cores into the aeolian bone rich deposits of TP2 [122-124] missed their nature (e.g., cores 173760, 173653 in Table 3), completely. Those deposits were characterized as sterile aeolian deposits. This error suggests that many seasonal occupation deposits will not be identified in coring, at least with the JMC backsaver. Conversely, cores are an excellent tool for roughly characterizing substantial permanent, long-term farmstead occupations

This upper low density 1104-1300 midden [122-124] is consistent with both temporary occupations, such as the visible booths, or potentially with permanent but less intense and sporadic refuse disposal that takes place at the far edges of middens. Thus, it is critical to investigate other midden deposits to the east that are consistent with later (1104-1300 domestic occupations - Figure 37 & Figure 38). Test pit 2 suggests the pre-1104 midden [127, 128, 129, & 130] almost certainly associated with a domestic occupation immediately to the west of the test pit. Which, structure or structures, if any, visible on the CMD are associated with this midden is difficult to postulate. That being said, Test pit 2 is consistent with a domestic occupational sheet midden, and is in a typical location with regards to the

30

visible churchyard and structures identified in the CMD readings, that the domestic occupation is associated with the church. The upper deposits, suggest either a distant edge or a seasonal occupation, consistent with later (post 1104) visible booths nearby, including in the churchyard itself.

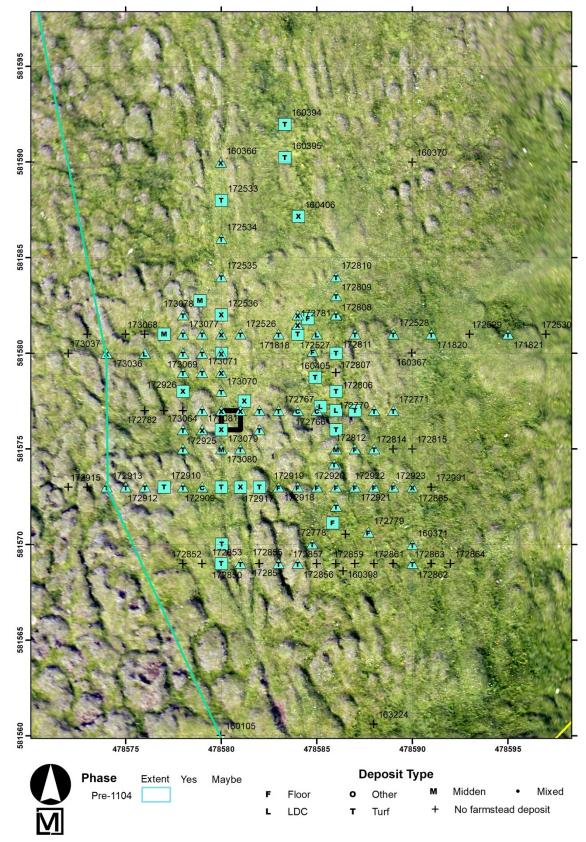


Figure 20. Location of test pit 1 with cores underlain by orthophoto

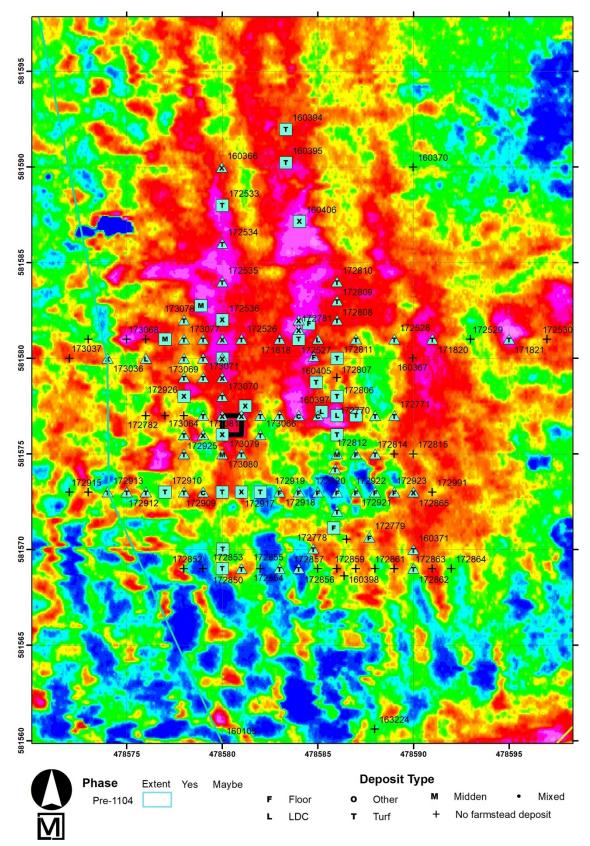


Figure 21. Location of test pit 1 with cores and CMD Mini Explorer C3 results (C3 color scale can be found in Figure 5 left).

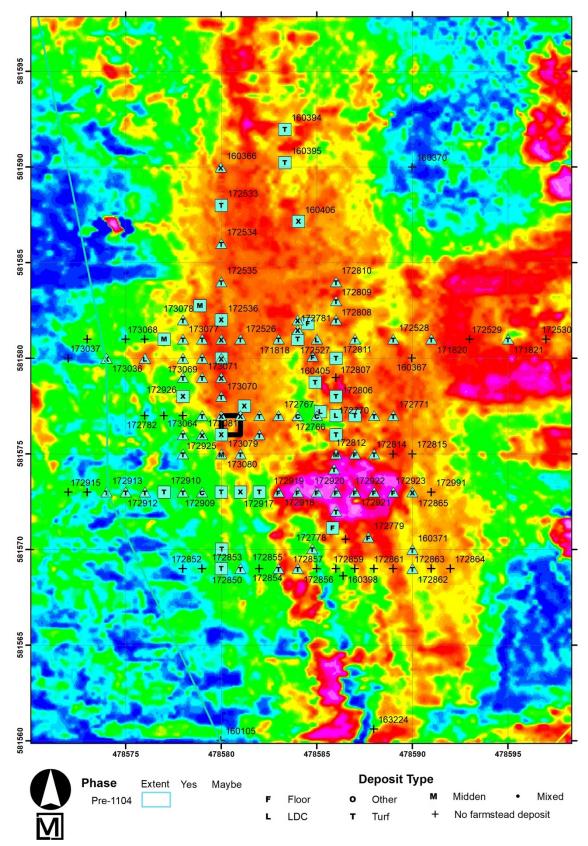


Figure 22. Location of test pit 1 with cores and CMD Mini Explorer IP3 results (IP3 color scale can be found in Figure 6 left).

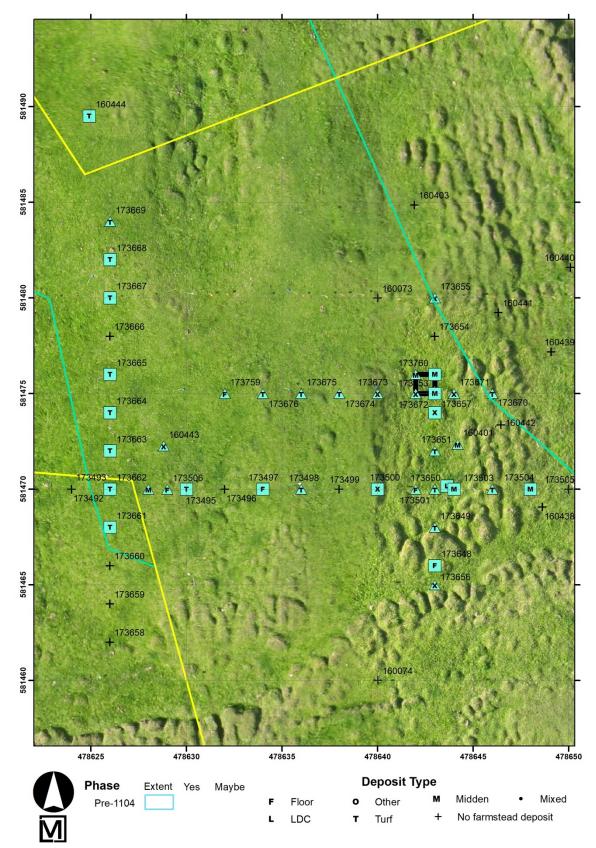


Figure 23. Location of test pit 2 with cores underlain by orthophoto

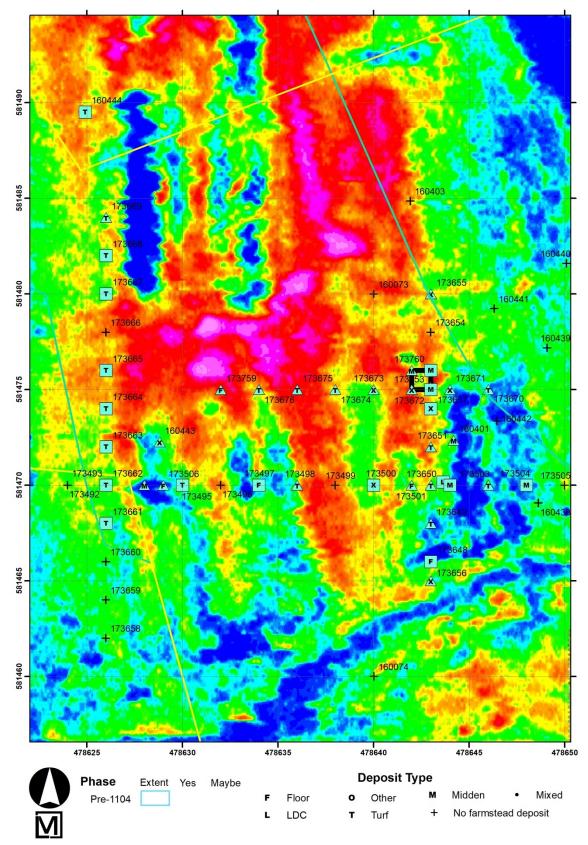


Figure 24. Location of test pit 2 with cores and CMD Mini Explorer C3 results (C3 color scale can be found in Figure 5 left).

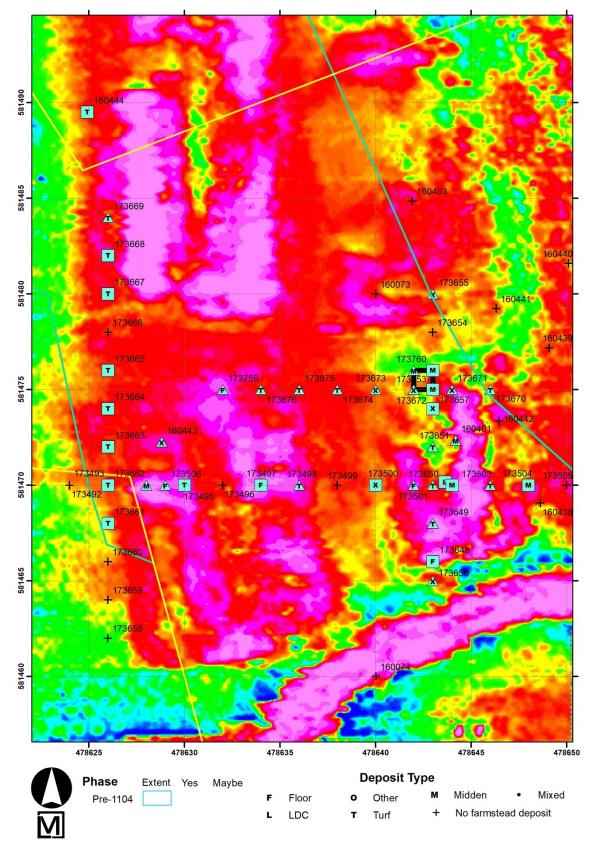


Figure 25. Location of test pit 2 with cores and CMD Mini Explorer IP1 results (IP3 color scale can be found in Figure 6 left).

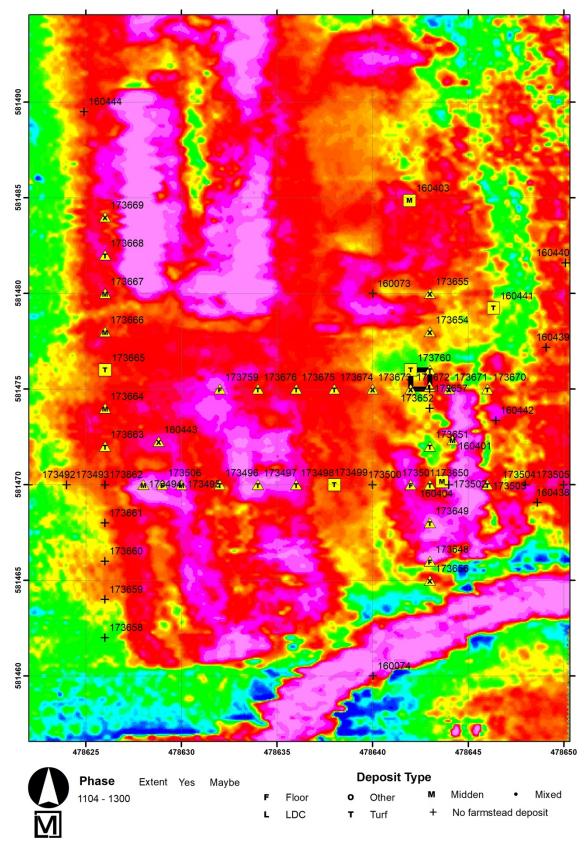
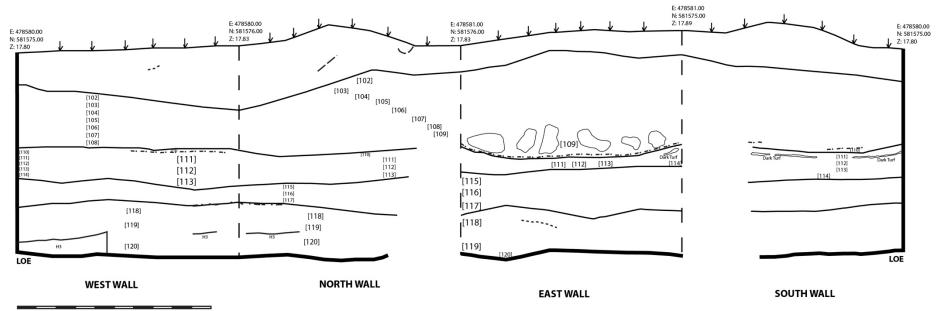
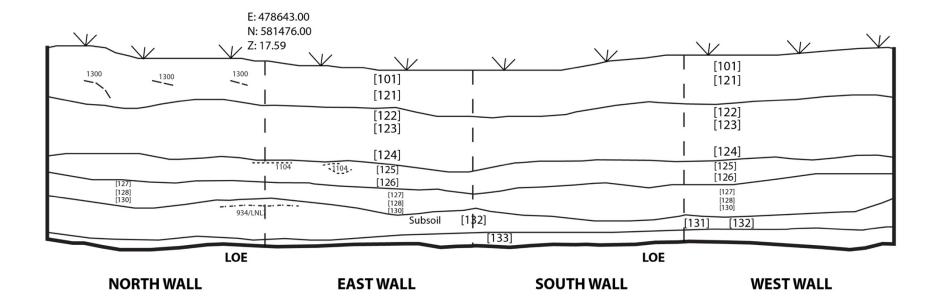



Figure 26. Location of test pit 2 with 1104-1300 cores and CMD Mini Explorer IP1 results (IP3 color scale can be found in Figure 6 left).

Garður/Hegranesþing - 444-1 TP 1

					Tephra	
E: 478580.00 N: 581575.00 Z: 17.80	Context 101 102 103 104 105 106 107 108 109 110	Description Root mat. Compact mid brown aeolian under root mat. Turf collapse; soft, mid yellowish-brown. Soft, mottled turf; mid brown with 1104 and H3. Soft, turf; mid yellowish-brown. Mottled turf collapse getting firmer; mid yellowish-brown. Firm turf collapse; mid yellowish-brown. Firm, mottled turf collapse; mid orangish-brown. Rocks in base of turf wall and surrounding turf. Mottled peat ash midden; mid pinkish-brown.	111 112 113 114 115 116 117 118 119 120	Soft, light pinkish-brown midden. Dense, mid pinkish-brown midden. Soft, mid pinkish-brown midden. Midden. Soft, mid greyish-brown mixed turf. Firm, dark brown. Firm, brown mottled turf. Thin, soft, brown aeolian deposit; ends on LNL. Cryoturbated aeolian deposit; mid reddish-brown; some iron precipitates. Aeolian with H3; mid reddish-brown; some iron throughout.		



1 Meter

Figure 27. Drawn profiles of test pit 1.

Garður/Hegranesþing - 444-1

TP 2	Context	Description		
E: 478642.00	101	Top Soil	127	Midden
N: 581475.00	121	Aeolian deposit	128	Black ash midden with bone inclusions
Z: 17.61			130	Mottled pink, gray, white and black peat and wood ash
	122	Turf with faint red (possible peat ash)		with charcoal, diatom and bone (including butter bone)
		north-south running stripes and gravel inclusions		inclusions
	123	Mixed turf with peat ash strips and burned bone		
Tanhua		and charcoal inclusions	131	Mottled colors in what could be a stake hole. Has wood and
Tephra	124	Mixed turf with charcoal bone and gravel inclusions		peat ash and charcoal inclusions
———— —— 1300			132	Yellowish-Brown aeolian deposit, with greenish glacial sand
1104	125	Aeolian deposit with bone inclusions. Large		mixed in. Gravel, pebble, and cobble inclusions. Dark tephra,
		stone/cobble located in center south half of unit		possibly 934 or LNL found in NE corner
934/LNL?	126	Brown aeolian and peat ash layer with bone, gravel,	133	Greenish-Brown glacial sand with gravel, pebble and cobble
		pebble, and cobble inclusions. Two large rocks in south		inclusions
		of unit		

1 Meter

Figure 28. Drawn profiles of test pit 2.

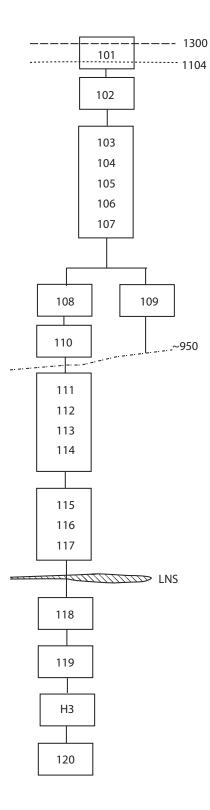


Figure 29. Harris matrix of test pit 1.

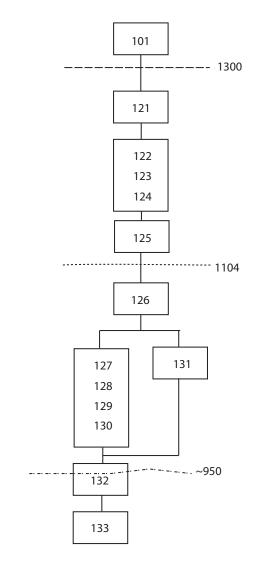


Figure 30. Harris Matrix of test pit 2.

Figure 31. Photo from the south of the excavation of TP 1, showing bottom of 108 and top of the probable wall [109]

Figure 32. plan photo of excavation of TP 1, showing bottom of [111] midden and top of the probable wall [109]

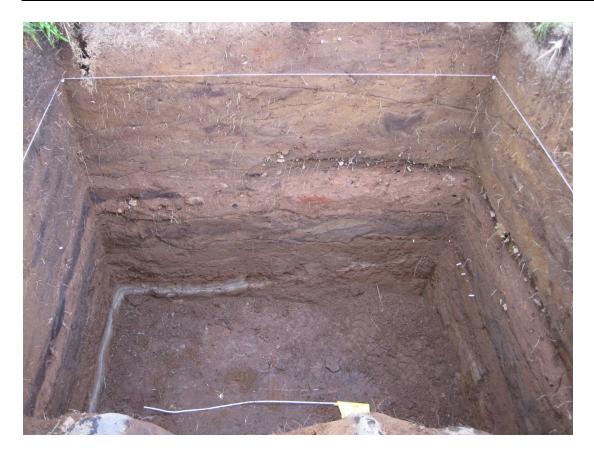


Figure 33. photo of west wall of the completed excavation of TP 1. A patch of H1 can be seen in the center, just above the leveling string (marked with white).

Figure 34. Photo from the south of the excavation of TP2, showing bottom of [128].

Figure 35. photo of east wall of the completed excavation of TP2. A patch of H1 can be seen in the northeast.

Figure 36. Photo of north wall of the completed excavation of TP2. A small patch of H1 can be seen in the northeast above the aeolian deposit mixed with bone [127-130].

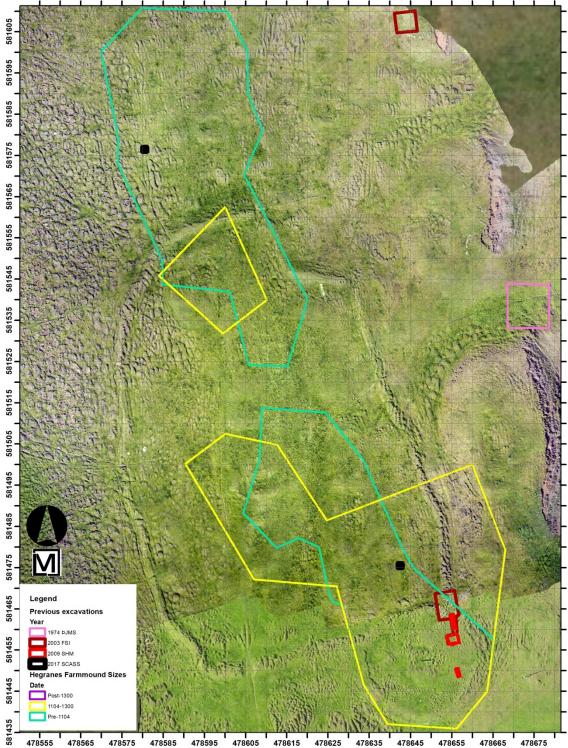


Figure 37. Farm mound areas with excavations superimposed on orthophoto.

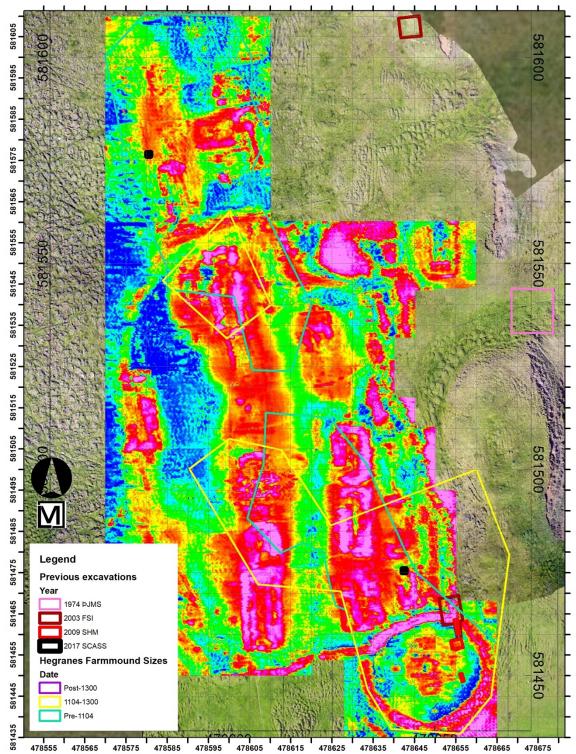


Figure 38. Farm mound areas with excavations superimposed on CMD Min-Explorer IP3 results.

CONCLUSIONS

Much of the archaeology at Hegranesping is associated with an assembly place and its temporary nature, the upper cultural deposit in TP2 [122-124] is entirely consistent with

temporary seasonal occupation. The geophysics, coring and test pits suggest deep and potentially old deposits that seem to be best interpreted as typical farmstead deposits.

Thus, these farmsteads have been measured and dated based on the cores and test pits. The northern pre-1104 tephra (blue in Figure 39) is about 2,410 m² and is termed Hegranesping 1 (Figure 39). The farmstead area of Hegranesping 1 extends south through the tún wall. Hegranesping 1 is the earliest farmstead identified at the site and seems to be primary before ~950. Hegranesping 2 (Figure 40), the southern farm mound is about 2080 m² and contains the churchyard. Even with the churchyard, Hegranesping 2 is the smallest farmstead yet identified at the site. Hegranesping 2 seems to primary occupied from ~950 to AD 1104. Hegranesping 3 is the AD 1104-1300 farmstead and has not been investigated with a test pit. Hegranesping 3 is probably also associated with the churchyard. There seem to be no substantial post 1300 permanent occupation at the site.

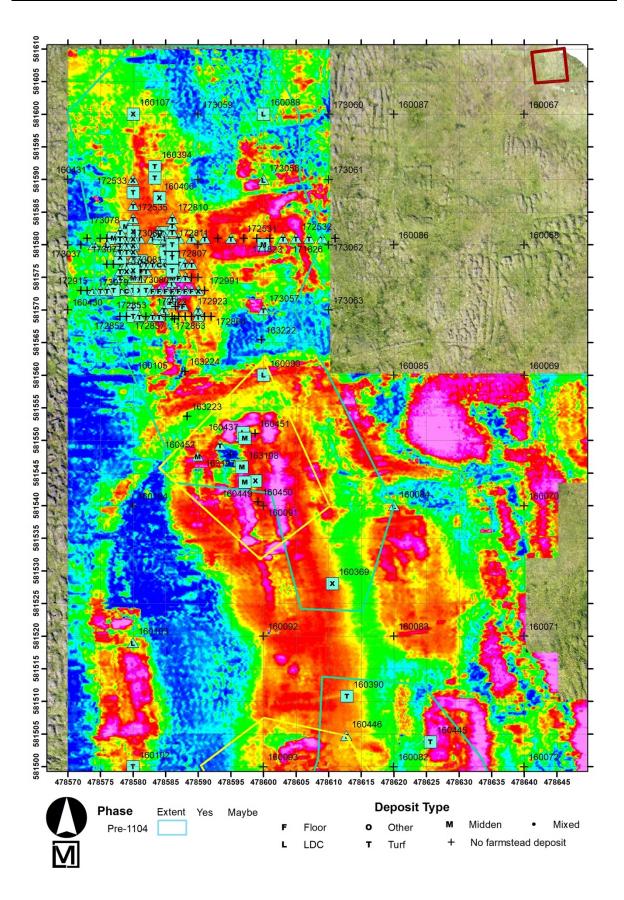


Figure 39. Northern pre-1104 Farmstead (Hegranesping 1) area in blue with cores on CMD Min-Explorer IP3 results.

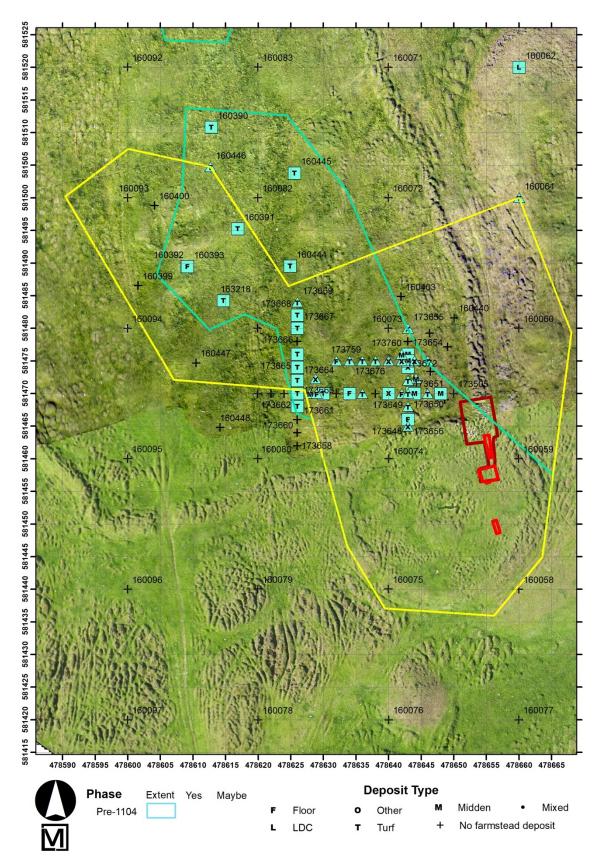


Figure 40. Southern pre-1104 Farmstead (Hegranesping 2) mound area in blue with cores on orthophoto.'

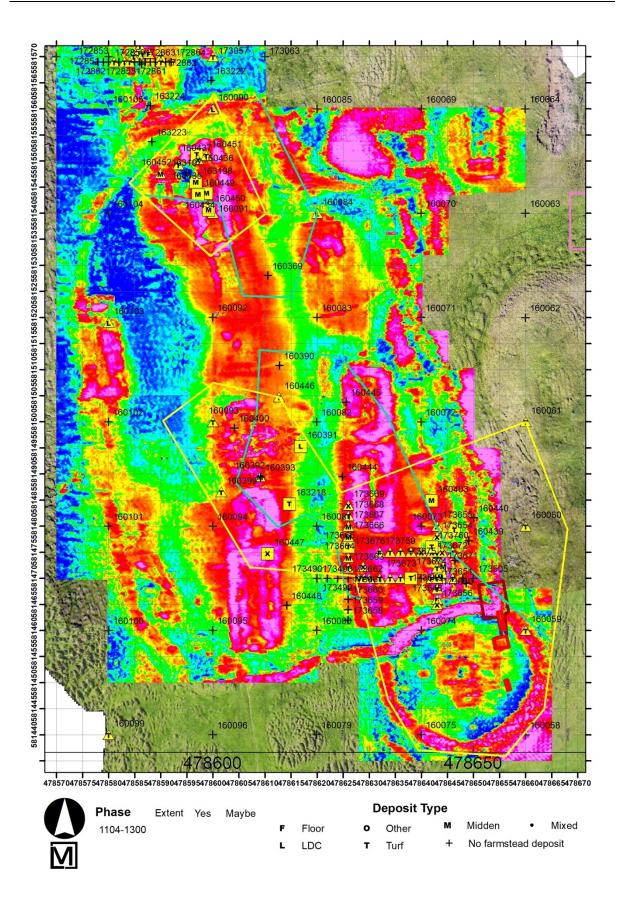


Figure 41. Southern 1104-1300 Farmstead (Hegranesping 2) mound area in yellow on CMD Min-Explorer IP3 results.

8.0 REFERENCES

Aldred, Oscar and Magnús Á. Sigurgeirsson

2005 *Fornleifarannsóknir á Reykjum í Ólafsfirði og á Lágheiði*. Fornleifastofnun Íslands. Copies available from FS268-04281.

Arnalds, Ólafur

2004 Volcanic soils of Iceland. Catena 56(1-3):3-20.

2008 Soils of Iceland. Jokull 58:409-421.

Arnalds, Ólafur, C. T. Hallmark and L. P. Wilding

1995 Andisols from 4 Different Regions of Iceland. *Soil Science Society of America Journal* 59(1):161-169.

Bevan, Bruce W.

1991 The search for graves. *Geophysics* 56(9):1310-1319.

Bonsall, James, Robert Fry, Chris Gaffney, Ian Armit, Anthony Beck and Vince Gaffney

2013 Assessment of the CMD Mini-Explorer, a New Low-frequency Multi-coil Electromagnetic Device, for Archaeological Investigations. *Archaeological Prospection* 20(3):219-231.

Bruun, Daniel

1897 *Fortidsminder og nutidshjem paa Island: orienterende undersøgelser.* Nordiske forlag, Copenhagen.

1899 Arkæologiske Undersøgelser paa Island foretagne i Sommeren 1898. *Geografisk Tidsskrift* 15:71-87.

Conyers, Lawrence B.

2005 Ground-Penetrating Radar for Archaeology. Altamira Press, Lanham, MD.

2006 Ground-Penetrating Radar Techniques to Discover and Map Historic Graves. *Historical Archaeology* 40(3):64-73.

Cossart, Etienne, Denis Mercier, Armelle Decaulne, Thierry Feuillet, Helgi Páll Jónsson and Þorsteinn Saemundsson

2014 Impacts of post-glacial rebound on landslide spatial distribution at a regional scale in northern Iceland (Skagafjörður). *Earth Surface Processes and Landforms* 39(3):336-350.

Damiata, Brian N., John M. Steinberg, Douglas J. Bolender and Guðný Zoëga

2013 Imaging skeletal remains with ground-penetrating radar: comparative results over two graves from Viking Age and Medieval churchyards on the Stóra-Seyla farm, northern Iceland. *Journal of Archaeological Science* 40:268-278.

2017 Subsurface imaging a Viking-Age churchyard using GPR with TDR: Direct comparison to the archaeological record from an excavated site in northern Iceland. *Journal of Archaeological Science: Reports* 12:244–256.

Damiata, Brian N., John M. Steinberg, John Schoenfelder and Douglas J. Bolender

2016 *Hegranesping on Hegranes : Geophysical Prospection Interim Report 2013 – 2015.*

Davies, S. M., G. Larsen, S. Wastegard, C. S. M. Turney, V. A. Hall, L. Coyle and T. Thordarson

2010 Widespread dispersal of Icelandic tephra: how does the Eyjafjoll eruption of 2010 compare to past Icelandic events? *Journal of Quaternary Science* 25(5):605-611.

Decaulne, A., E. Cossart, D. Mercier, T. Feuillet, J. Coquin and H. P. Jonsson

2016 An early Holocene age for the Vatn landslide (Skagafjörður, central northern Iceland): Insights into the role of postglacial landsliding on slope development. *The Holocene* 26(8):1304-1318.

Doolittle, J. A. and N. F. Bellantoni

2010 The search for graves with ground-penetrating radar in Connecticut. *Journal of Archaeological Science* 37(5):941-949.

Dugmore, Andrew J and Anthony J Newton

Damiata, Brian N., John M. Steinberg, Douglas J. Bolender, Guðný Zoëga and John W. Schoenfelder

2012 Isochrons and beyond: maximising the use of tephrochronology in geomorphology. *Jökull* 62:39-52.

Dugmore, Andrew J., G. T. Cook, J. S. Shore, A. J. Newton, K. J. Edwards and Gudrún Larsen

1995 Radiocarbon Dating Tephra Layers in Britain and Iceland. *Radiocarbon* 37(2):10.

Eiriksson, J., K. L. Knudsen, H. Haflidason and J. Heinemeier

2000 Chronology of late Holocene climatic events in the northern North Atlantic based on AMS C-14 dates and tephra markers from the volcano Hekla, Iceland. *Journal of Quaternary Science* 15(6):573-580.

Fei, J. and J. Zhou

2006 The possible climatic impact in China of Iceland's Eldgja eruption inferred from historical sources. *Climatic Change* 76(3-4):443-457.

Feuillet, T., D. Mercier, A. Decaulne and E. Cossart

2012 Classification of sorted patterned ground areas based on their environmental characteristics (Skagafjorour, Northern Iceland). *Geomorphology* 139:577-587.

Friðriksson, Adolf, Colleen Batey, Hildur Gestsdóttir, Garðar Guðmundsson, Magnús Á. Sigurgeirsson, Howell M. Roberts and Jim Wollett

2004 *Pinghhald að Fornufornleifarannsóknir 2003*. Fornleifastofnun Íslands (FSÍ).

Gaffney, Chris and John Gater

2003 Revealing the buried past : geophysics for archaeologists. Tempus, Stroud.

Grab, S.

2005 Aspects of the geomorphology, genesis and environmental significance of earth hummocks (thufur, pounus): miniature cryogenic mounds. *Progress in Physical Geography* 29(2):139-155.

Grönvold, K., N. Óskarsson, S. J. Johnsen, H. B. Clausen, C. U. Hammer, G. Bond and E. Bard

1995 Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments. *Earth and Planetary Science Letters* 135:149-155.

Hafliðason, Einarr

1890 The Life of Laurence, Bishop of Hólar in Iceland (Laurentius saga). Translated by Oliver Elton. Rivington, London.

Hallsdóttir, M.

1987 Pollen analytical studies of human influence on vegetation in relation to the Landnám tephra layer in Southwest Iceland. Ph.D., Department of Quarternary Geology, Lund University, Lund.

Hammer, Claus U, Henrik B Clausen and Willi Dansgaard

1980 Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. *Nature* 288:230-235.

Harrison, Ramona, Howell M. Roberts and W. Paul Adderley

2008 Gásir in Eyjafjörður: International Exchange and Local Economy in Medieval Iceland. *Journal of the North Atlantic* 1:99-119.

Johnsen, Jón

1847 Jarðatal á Íslandi. S. Trier, Copenhagen.

Jones, G

2008 Geophyscial Mapping of Historic Cemeteries. *Technical Briefs in Historical Archaeology* 3:25-38.

Jónsson, Helga Pál

2005 Gjóskulög í Skagafirði.

Kålund, Kristian

1892 Bidrag til en historisk-topografisk Beskrivelse af Island 2. Gyldendalske Boghandel, Kjóbenhavn.

King, J. A., R. J. Hurry and Bruce W. Bevan

1993 Reliability of geophysical surveys at historic-period cemeteries: an example from the Plains cemetery, Mechanicsville, Maryland. *Historical Archaeology* 27:4-16.

Kirkbride, Martin P. and Andrew J. Dugmore

2006 Responses of mountain ice caps in central Iceland to Holocene climate change. *Quaternary Science Reviews* 25(13-14):1692-1707.

Larsen, Gudrún

1984 Recent volcanic history of the Veidivotn fissure swarm, southern Iceland -- an approach to volcanic risk assessment. *Journal of Volcanology and Geothermal Research* 22(1-2):33-58.

Larsen, Gudrún, Andrew J. Dugmore and Anthony Newton

1999 Geochemistry of historical-age silicic tephras in Iceland. The Holocene 9(4):9.

Larsen, Gudrún, Jón Eiríksson, Karen Louise Knudsen and Jan Heinemeier

2002 Correlation of late Holocene terrestrial and marine tephra markers, north Iceland: implications for reservoir age changes. *Polar research* 21(2):283-290.

Larsen, Gudrún, Anthony J. Newton, Andrew J. Dugmore and E. G. Vilmundardottir

2001 Geochemistry, dispersal, volumes and chronology of Holocene silicic tephra layers from the Katla volcanic system, Iceland. *Journal of Quaternary Science* 16:119-132.

Lárusdóttir, Birna, Howell M. Roberts, Sigríður Þorgeirsdóttir, Ramona Harrison and Magnús Á. Sigurgeirsson

2012 *Siglunes Archaeological investigations in 2011*. Fornleifastofnun Íslands. Copies available from FS480-11121.

Linford, N.

2006 The application of geophysical methods to archaeological prospection. *Reports on Progress in Physics* 69(7):2205-2257.

Magnússon, Árni and Páll Vídalín

1930 Járðabók 9. 13 vols. Hið íslenska fræðafélag, Copenhagen.

Neil, F. Glasser

2002 The Large Roches Moutonnees of Upper Deeside. *Scottish Geographical Journal* 118:129-139.

Ólafsson, Guðmundur

1985 Gjóskulög í Austurdal og Vesturdal, Skagafirdi. , Námsritgerd við Háskóla Íslands, Reykjavík.

Ólafsson, Guðmundur and Mjöll Snæsdóttir

1975 Rúst í Hegranesi. Árbók hins íslenzka fornleifafélags 1975:69-78.

Oppenheimer, Clive, Andy Orchard, Markus Stoffel, Timothy P. Newfield, Sébastien Guillet, Christophe Corona, Michael Sigl, Nicola Di Cosmo and Ulf Büntgen

2018 The Eldgjá eruption: timing, long-range impacts and influence on the Christianisation of Iceland. *Climatic Change*.

Pálsson, Hermann and Paul Geoffrey Edwards

1972 *The book of settlements; Landnámabók.* University of Manitoba Icelandic studies. University of Manitoba, Winnipeg.

Pálsson, Hjalti

2010 *Byggðasaga Skagafjarðar: V Bindi Rípurhreppur - Viðvíkurhreppur.* Sögufélag Skagafirðinga, Sauðárkróki (Iceland).

Rafnsson, Sveinbjörn

1983 *Frásögur um fornaldarleifar: 1817 - 1823* 1. Stofnun Árna Magnússonar, Reykjavik

Roberts, Howell M.

2003 Gásir 2002 an interm report. Copies available from FS194 - 01073.

2004 *Excavations at Gásir 2003: An Interim Report*. Fornleifastofnun Íslands. Copies available from FS238-01075.

2006 *Excavations at Gásir 2001-2006: A Preliminary Report.* Fornleifastofnun Íslands. Copies available from FS335-01079.

Sanmark, Alexandra

2017 *Viking law and order: places and rituals of assembly in the medieval North.* Edinburgh University Press, Edinburgh.

Schmid, Magdalena M. E., Andrew J. Dugmore, Orri Vésteinsson and Anthony J. Newton

2017 Tephra isochrons and chronologies of colonisation. *Quaternary Geochronology* 40:56-66.

Schultz, John J.

2008 Sequential Monitoring of Burials Containing Small Pig Cadavers Using Ground Penetrating Radar*. *Journal of Forensic Sciences* 53(2):279-287.

Schultz, John J. and Michael M. Martin

2011 Controlled GPR grave research: Comparison of reflection profiles between 500 and 250 MHz antennae. *Forensic Science International* 209(1–3):64-69.

Scudder, Bernard

1997 The Saga of Grettir the Strong. In *The Complete Sagas of the Icelanders*, edited by V. Hreinsson, pp. 49-191. vol. II. Leifur Eiriksson, Reykjavik.

Sigurðardóttir, Sigríður

2012 *Miðaldakirkjur 1000-1318*. Rit Byggðasafns Skagfirðinga 1. Byggðasafn Skagfirðinga, Akureyri.

Sigurðsson, Jón Viðar

2012 The organisation of Hólar bishopric according to Auðunarmáldagar. In *Ecclesia Nidrosiensis' and 'Noregs veldi'. The role of the Church in the Making of Norwegian Domination in the Norse World*, pp. 243–259. Tapir akademisk forlag, Trondheim.

Sigurgeirsson, Magnús Á.

2001 Archaeological research in Skagafjörður, North Iceland: Tephrachronological study - preliminary report. Sigurgeirsson, Magnús Á., Ulf Hauptfleisch, Anthony Newton and Árni Einarsson

2013 Dating of the Viking Age Landnám Tephra Sequence in Lake Mývatn Sediment, North Iceland. *Journal of the North Atlantic* 21:1-11.

Steinberg, John M., Douglas J. Bolender and Brian N. Damiata

2016 The Viking Age settlement pattern of Langholt, North Iceland: Results of the Skagafjörður Archaeological Settlement Survey. *Journal of Field Archaeology* 41(4):389-412.

Steinberg, John M., Brian N. Damiata, John W. Schoenfelder, Guðný Zoöga and Douglas J. Bolender

2017 *Hegranesþing: Geophysical Prospection and Coring, Interim Report 2016.* Byggðasafn Skagfirðinga/Fiske Center for Archaeological Research. Copies available from BSK 2017-184 / SCASS 2017-12.

Sveinbjarnardóttir, Guðrún

1992 Farm Abandonment in Medieval and Post-Medieval Iceland: an Interdisciplinary Study. Oxbow Monograph 17. Oxbow Press, Oxford.

Thórarinsson, S.

1967 The eruptions of Hekla in historical times. In *The Eruption of Hekla, 1947-1948. Vol. 1 of The Eruptions of Hekla in Historical Times: A Tephrochronological Study*, edited by S. Thórarinsson, pp. 5-183. Leiftur, Reykjavik.

Thordarson, T., D. J. Miller, G. Larsen, S. Self and H. Sigurdsson

2001 New estimates of sulfur degassing and atmospheric mass-loading by the 934 AD Eldgia eruption, Iceland. *Journal of Volcanology and Geothermal Research* 108(1-4):33-54.

Vésteinsson, Orri

2008 *The church in Gásir: Interim report on excavations in 2004 and 2006.* Fornleifastofnun Íslands.

Vésteinsson, Orri

2013 What is in a Booth? Material Symbolism at Icelandic Assembly Sites. *Journal of the North Atlantic*:1.

Vésteinsson, Orri, Árni Einarsson and Magnús Á. Sigurgeirsson

2004 A New Assembly Site in Skuldaþingsey, NE-Iceland. *Proceedings of the Current Issues in Nordic Archaeology*:171-179. Akureyri, Iceland.

Vigfússon, Sigurður

1892 Rannsóknarferð um Húnavatns og Skagafjarðar sýslur 1886. *Árbók Hins íslenzka fornleifafélags* 7(1888-1892):76-123.

Wastegard, S., V. A. Hall, G. E. Hannon, C. van den Bogaard, J. R. Pilcher, M. A. Sigurgeirsson and M. Hermanns-Audardottir

2003 Rhyolitic tephra horizons in northwestern Europe and Iceland from the AD 700s-800s: a potential alternative for dating first human impact. *Holocene* 13(2):277-283.

Zielinski, Gregory A., Paul A. Mayewski, L. David Meeker, Karl Grönvold, Mark S. Germani, Sallie Whitlow, Mark S. Twickler and Kendrick Taylor

1997 Volcanic aerosol records and tephrochronology of the Summit, Greenland, ice cores. *Journal of Geophysical Research* 102(12):26625-26640.

Zoëga, Guðný

2009 *Skagfirska kirkjurannsóknin framvinduskýrsla 2009*. Byggðasafn Skagfirðinga.

2014 Early church organization in Skagafjörður, North Iceland. The results of the Skagafjörður Church Project. *Collegium Medievale*:23-62.

2015 A family revisisted: the medieval household cemetery of Keldudalur, North Iceland. *Norwegian Archaeological Review* 3652(June):1-20.

Zoëga, Guðný and Guðmundur St. Sigurðarson

2009 *Skagfirska kirkjurannsóknin: Framvinduskýrsla um fornleifarannsóknir 2008.* BSK-2016-172. Copies available from BSK-2016-91.

Þórarinsson, Sigurður

1977 Gjóskulög og gamlar rústir. Árbók 1976:5-38.

Þórðarson, Sturla

1894 The Saga of Hacon. In *Icelandic Sagas* edited by G. W. Dasent. vol. IV. Her Majestys Stationary Office, London.

APPENDIX A – BASIC PRINCIPLES OF FREQUENCY-DOMAIN ELECTROMAGNETICS

The frequency-domain electromagnetic (FDEM) method is an active non-destructive geophysical method that is used to obtain shallow subsurface information. In the EM method, a time-varying magnetic field is generated by driving an alternating current through either a loop of wire or a straight wire that is grounded at both ends. Induced or eddy currents with flow within any conductive solid or fluid material that is present beneath the area of investigation. The eddy currents, in turn, generate their own magnetic fields such that at any point in space, the total magnetic field is the superposition of the primary field due to the source current and secondary fields due to the eddy currents, as schematically illustrated in Figure B1. By discriminating between primary and secondary fields, variations in the EM properties of the ground can be discerned.

EM instruments measure both out-of-phase (quadrature) and in-phase components of the induced magnetic fields. The former is a measure of the bulk apparent ground conductivity; the latter is related to magnetic susceptibility and is particularly sensitive to the presence of metallic objects. Bulk apparent ground conductivity reflects true conductivity when the subsurface is homogeneous and isotropic, which is rarely the case in practice. For heterogeneous conditions, it represents an integrated effect of the all the conductivity within the volume of ground being sensed. It does not, however, represent an average conductivity and in fact can be lower or higher than the lowest or highest subsurface conductivities, respectively. A lateral variation in the components is indicative of lateral changes in properties. The conductivity is particularly sensitive to fluid content and dissolved salts or ions. Accordingly, wet sands, clays and materials with high ion content generally have high bulk apparent ground conductivity; dry sands and crystalline rocks have low bulk apparent ground conductivity.

Ideally, EM surveys are conducted in archaeological investigations to find conductive targets in resistive environments such as middens and rammed-earthed walls. Although more subtle and difficult to detect, resistive targets such as buried stone walls and foundations can also be detected through EM surveying.

62

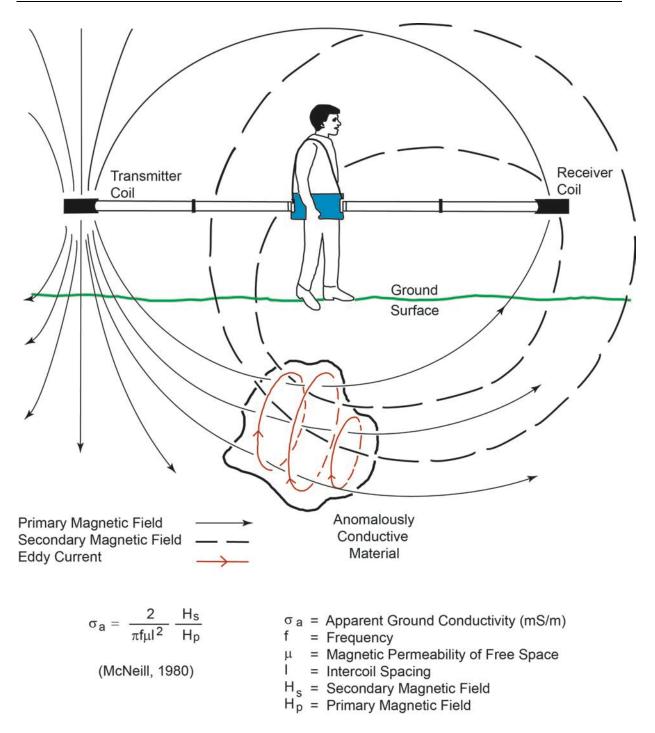


Figure A1. Schematic diagram illustrating the principles of FDEM.

APPENDIX B- 2017 CORING DATA

Table 1. Coring locations.

Core Number	End Depth	East	North
171815	65	478573	581581
171816	57	478575	581581
171817	110	478579	581581
171818	105	478583	581581
171819	40	478587	581581
171820	95	478591	581581
171821	95	478595	581581
171822	85	478599	581581
171823	57	478603	581581
171824	70	478607	581581
171825	64	478611	581581
171826	85	478609	581581
171827	115	478584	581581
171828	48		
172525	110	478577	581581
172526	115	478581	581581
172527	104	478585	581581
172528	75	478589	581581
172529	115	478593	581581
172530	115	478597	581581
172531	50	478601	581581
172532	50	478605	581581
172533	120	478580	581588
172534	120	478580	581586
172535	120	478580	581584
172536	-	478580	581582
172537		478580	581580
172538	130	478580	581578
172757	40	478586.512	581570.541
172758	80	478585.908	581574.208
172759	70	478586	581573
172760	80	478586	581572
172761	65	478586	581575
172762		478580	581577
172763	55	478581	581577
172764	98	478582	581577
172765	110	478583	581577
172766	102	478584	581577
172767	120	478585	581577
172768	102	478586	581577
172769	62	478587	581577
172770	95	478588	581577
172771	50	478589	581577
172778	50	478584.759	581570.035
172779	110	478587.697	581570.645
172780	80	478584	581582
172781	70	478584	581581.5
172782	62	478576	581577
172783	15	478577	581577
1,2,05	15	770377	501577

Core Number	End Depth	East	North
172784	68	478578	581577
172785	110	478579	581577
172805	64	478586	581576
172806	80	478586	581578
172807	47	478586	581579
172808	40	478586	581582
172809	94	478586	581583
172810	75	478586	581584
172811	68	478586	581580
172812	120	478587	581580
172812	120	478588	581575
172814	50	478589	581575
172815	110	478590	581575
172850	63	478580	581569
172851	90	478579	581569
172852	18	478578	581569
172853	61	478581	581569
172854	56	478582	581569
172855	36	478583	581569
172856	62	478584	581569
172857	63	478585	581569
172858	37	478586	581569
172859	54	478587	581569
172860	62	478588	581569
172861	25	478589	581569
172862	69	478590	581569
172863	67	478591	581569
172864		478592	581569
172865	120	478590	581573
172907	80	478580	581573
172908	78	478579	581573
172909	80	478578	581573
172910	80	478577	581573
172911	80	478576	581573
172912	80	478575	581573
172912	75	478574	581573
172913	75	478573	581573
172915	87	478572	581573
172916	80	478581	581573
172917	120	478582	581573
172918	78	478583	581573
172919		478584	581573
172920		478585	581573
172921	120	478587	581573
172922	73	478588	581573
172923	69	478589	581573
172924	80	478578	581575
172925	79	478578	581576
172926	75	478578	581578
172927	78	478578	581579
172991	64	478591	581573
173034	120	478578	581580
173035	60	478576	581580
173036	67	478574	581580

North	East	End Depth	Core Number
581570	478600	76	173057
581590	478600	52	173058
581600	478590	40	173059
581600	478610	45	173060
581590	478610	40	173061
581580	478610	85	173062
581570	478610	57	173063
581576	478579	66	173064
581575	478581	46	173065
581576	478582	120	173066
581581	478580	120	173067
581581	478576	65	173068
581580	478579	108	173069
581579	478580	110	173070
581579	478579	120	173071
581581	478578	110	173077
581582	478578	120	173078
581576	478580	81	173079
581575	478580	90	173080
581576	478579	83	173081
581470	478620	40	173490
581470	478622	45	173491
581470	478624	55	173492
581470	478626	70	173492
581470		40	173493
581470	478628 478630	83	173494
581470	478632	80	173496
581470	478634	90	173497
581470	478636	40	173498
581470	478638	100	173499
581470	478640	120	173500
581470	478642	74	173501
581470	478644	40	173502
581470	478646	52	173503
581470	478648	48	173504
581470	478650	28	173505
581470	478629	65	173506
581457.3939	478539.2852	68	173627
581459.4188	478530.8568	40	173628
581466	478643	65	173648
581468	478643	45	173649
581470	478643	45	173650
581472	478643	41	173651
581474	478643	53	173652
581476	478643	62	173653
581478	478643	71	173654
581480	478643	60	173655
581465	478643	71	173656
581475	478643	56	173657
581462	478626	52	173658
581464	478626	58	173659
581466	478626	56	173660
581468	478626	62	173661
301.00	478626	02	173662
581470	4/00/0		173007

Core Number	End Depth	East	North
173664	67	478626	581474
173665	95	478626	581476
173666	60	478626	581478
173667	75	478626	581480
173668	65	478626	581482
173669	71	478626	581484
173670	60	478646	581475
173671	44	478644	581475
173672	73	478642	581475
173673	112	478640	581475
173674	91	478638	581475
173675	86	478636	581475
173676	43	478634	581475
173759	110	478632	581475
173760	70	478642	581476

Core Number	Depth	Tephra	Description
171815	25	1300	
171815	50	H3	
171815	55	H4	
171816	46	H3	
171817	107	H3	
171818	92	H3	
171820	73	H3	
171822	59	H1	
171822	66	Н3	
171827	29	H1	
171827	79	Н3	
171828	18	Н3	Appears to have been truncated at too
172525	30	H1	
172525	103	Н3	
172525	105	H4	
172530	100	H3	
172530	105	H4	
172532	38	H3	
172532	40	H4	
172536	62	950	
172537	89	LNS	
172537	97	H3	
172538	105	H3	
172758	50	LNL	
172758	70	H3	
172758	75	H4	
172759	62	Н3	
172760	57	H3	
172760	65	H4	
172764	88	LNS	
172767	81	H3	
172768	11	H1	
172768	51	H3	
172769	18	H1	Cryoturbated
172778	48	Katla 850	
172778	56	H3	
172782	26	LNL	
172784	28	LNL	
172785	80	H3	
172805	31	H1	
172806	22	H1	
172806	74	H3	
172807	6	H1	
172809	72	H3	
172811	21	H1	
172811	66	H3	
172813	93	H3	

Table 2. Tephra layers in cores

Core Number	Depth	Tephra	Description
172813	104	H4	
172814	28	H1	
172815	58	LNS	
172815	70	H3	
172815	72	H4	
172850	20	H1	
172851	20	1300	
172851	32	H1	
172851	51	LNS	
172851	60	H3	
172853	49	1000	Possibly in turf
172856	60	H3	
172859	31	H1	
172860	60	H3	
172862	67	H3	
172863	31	H1	
172864	36	H1	
172864	62	LNL	
172864	78	H3	
172865	88	H3	
172907	16	H1	
172908	76	H3	
172910	12	H1	
172910	63	H3	
172910	70	H4	
172911	56	H3	
172911	60	H4	
172912	60	H3	
172912	65	H4	
172913	60	H3	
172913	64	H4	
172914	22	H1	
172914	40	LNS	
172914	41	H3	
172914	50	H4	
172915	15	H1	
172915	60	LNS	
172915	70	H3	
172915	75	H4	
172916	19	H1	
172917	25	H1	
172918	45	LNL	
172918	47	Katla 850	
172918	55	H3	
172918	61	H4	
172919	75	H3	
172919	80	H4	
172920	69	H3	
172920	73	H4	

172921 99 H3 172921 105 H4 172923 66 H3 172924 75 H4 172925 68 H3 172926 35 H1 172927 65 H3 172927 65 H3 173036 41 1000 173036 41 1000 173036 41 1000 173036 41 1000 173036 47 H3 173037 42 H3 173038 75 8 173059 29 H3 173050 27 H3 173061 32 H3 173063 17 1000 173063 17 1000 173063 29 LNL 173070 78 H3 173070 78 H3 173079 31 H1 173079 76 LNL 173079 76 LNL <t< th=""><th>Core Number</th><th>Depth</th><th>Tephra</th><th>Description</th></t<>	Core Number	Depth	Tephra	Description
172923 66 H3 172924 75 H4 172925 68 H3 172926 35 H1 172927 65 H3 173036 41 1000 Little greenish gray 173036 41 1000 Little greenish gray 173036 47 H3 173037 42 H3 173059 29 H3 173060 27 H3 173061 32 H3 173063 17 1000 173063 17 1000 173064 64 H3 173070 78 H3 173071 105 H3 173073 105 H3 173079 76 LNL 173079 76 LNL 173079 76 LNL 17349	 172921	99	H3	
172924 65 H3 172924 75 H4 172925 68 H3 172927 65 H3 1729291 63 H3 173034 96 H3 173036 41 1000 Little greenish gray 173036 47 H3 173037 48 H4 173059 29 H3 173060 27 H3 173063 17 H000 173063 29 LNL 173063 29 LNL 173063 29 LNL 173064 64 H3 173070 78 H3 173070 78 H3 173070 78 H3 173070 78 H3 173079 31 H1 173079 105 H3 173079 105 H3 173079 105 H3 173079 105 H3 173079 105 H	172921	105	H4	
172924 75 H4 172925 68 H3 172927 65 H3 173036 91 1000 173036 41 1000 173036 47 H3 173037 42 H3 173037 42 H3 173037 48 H4 173059 29 H3 173060 27 H3 173063 17 1000 173063 17 1000 173063 17 1000 173063 17 1000 173064 64 H3 173065 9 LNL 173066 64 H3 173070 78 H3 173071 105 H3 173072 11 H1 173073 105 H3 173079 11 H1 173079 12 H1 173079 13 H1 173491 9 1766 <t< td=""><td>172923</td><td>66</td><td>H3</td><td></td></t<>	172923	66	H3	
172925 68 H3 172926 35 H1 172927 65 H3 173034 96 H3 173036 47 H3 173036 47 H3 173037 48 H4 173059 29 H3 173060 27 H3 173061 32 H3 173063 17 1000 173063 29 LNL 173063 29 LNL 173064 64 H3 173065 17 1000 173063 29 LNL 173064 64 H3 173070 78 H3 173070 78 H3 173070 78 H3 173079 76 LNL 173079 78 H3 173070 78 H3 173070 78 H3 173070 78 H3 173079 105 H3 1730	172924	65	H3	
172926 35 H1 172927 65 H3 173034 96 H3 173036 41 1000 Little greenish gray 173036 57 H4 173037 42 H3 173050 29 H3 173061 32 H3 173063 17 1000 173063 17 1000 173063 17 1000 173063 17 1000 173064 64 H3 173069 96 H3 173068 64 H3 173069 96 H3 173070 78 H3 173079 18 1300 173491 9 1766 173491 18 1	172924	75	H4	
172927 65 H3 172991 63 H3 173036 96 H3 173036 41 1000 Little greenish gray 173036 47 H3 173037 42 H3 173037 42 H3 173057 58 H3 173057 29 H3 173060 27 H3 173063 17 1000 173063 29 LNL 173063 29 LNL 173064 64 H3 173070 78 H3 173071 105 H3 173079 76 LNL 173079 130 H1 173079 141 1300 173491 18 1300 173491 18	172925	68	H3	
172991 63 H3 173034 96 H3 173036 41 1000 Little greenish gray 173036 57 H4 173037 42 H3 173059 99 H3 173061 32 H3 173063 17 1000 173063 17 1000 173063 17 1000 173063 17 1000 173064 64 H3 173070 78 H3 173071 105 H3 173079 76 LNL 173079 105 H3 173079 76 LNL 173079 11 H1 173490 20 1300 173491 9 1766 173491 18 1300 173491 18	172926	35	H1	
173034 96 H3 173036 41 1000 Little greenish gray 173036 57 H4 173037 42 H3 173037 42 H3 173059 29 H3 173061 32 H3 173063 17 1000 173063 17 1000 173063 29 LNL 173063 29 LNL 173064 64 H3 173070 78 H3 173071 105 H3 173079 76 LNL 173079 76 LNL 173079 76 LNL 173079 76 LNL 173079 105 H3 173079 31 H1 173079 76 LNL 173491 9 1766 173491 18 1300 173491 18 1300 173493 31.5 H1 173497 73	172927	65	H3	
173036411000Little greenish gray17303647H317303742H317303748H417305758H317305027H317306027H317306312H317306329LNL17306329LNL17306464H317306596H317307078H317307991H117307976LNL17307978H317307976LNL17307914117307976LNL1734902013001734919176617349118130017349331.5H117349331.5H117349331.5H117349777H317349918130017349978H417350021H117350021H1173503561000	172991	63	H3	
173036 47 H3 173036 57 H4 173037 42 H3 173037 48 H4 173057 58 H3 173059 29 H3 173060 27 H3 173063 17 1000 173063 17 1000 173063 17 1000 173063 17 1000 173063 17 1000 173064 64 H3 173070 78 H3 173079 11 105 173079 76 LNL 173079 76 LNL 173080 80 H3 173080 80 H3 173490 20 1300 173491 9 1766 173491 9 1766 173493 31.5 H1 173493 31.5 H1 173493 31.5 H1 173493 31.5 H1 <tr< td=""><td>173034</td><td>96</td><td>H3</td><td></td></tr<>	173034	96	H3	
17303657H417303742H317303748H417305758H317305029H317306027H317306317100017306329LNL17306329LNL17306464H317305996H317306996H317307078H317307931H117307978H317307978H317307978H317307978H317307978H317307978H317308080H31734919176617349132H117349230H117349331.5H117349331.5H117349377H317349315H117349377H317349316H317349317H117349317H117349310H317349318130017349318130017349378H417350021H117350219H117350219H1173503561000	173036	41	1000	Little greenish gray
17303742H317303748H417305758H317305029H317306027H317306132H317306317100017306329LNL17306335H317306464H317307078H317307078H317307931H117307976LNL17307978H317307976LNL17307930H11734919176617349131.5H117349230H117349331.5H117349777H117349918130017349978H417350021H117350021H117350219H1173503561000	173036	47	H3	
17303748H417305758H317305929H317306027H317306132H317306317100017306329LNL17306335H317306464H317307078H317307078H317307905H317307976LNL17307976LNL17307976LNL17307978H317307976LNL1734902013001734919176617349131.5H117349230H117349331.5H117349777H117349918130017349978H417350021H117350021H1173503561000	173036	57	H4	
17305758H317305029H317306027H317306132H317306317100017306329LNL17306464H317306564H317307078H317307976LNL17307978H317307978H317307976LNL17308080H317349020130017349118130017349132H117349230H117349539H117349777H317349970H317349978H317349539H117349777H117349970H317349970H317349978H417350021H1173503561000	173037	42	H3	
17305929H317306027H317306132H317306317100017306329LNL17306335H317306464H317306996H317307078H3173071105H317307976LNL17307976LNL17307976LNL17307976LNL1734902013001734919176617349118130017349331.5H117349331.5H117349331.5H117349331.5H117349331.5H117349373H317349978H317349978H417350021H117350219H1173503561000	173037	48	H4	
17306027H317306132H317306317100017306329LNL17306335H317306464H317306996H317307078H3173079105H317307976LNL17307976LNL17307976LNL17307978H317307976LNL1734902013001734919176617349118130017349230H117349331.5H117349539H117349773H317349918130017349978H317349978H417350021H117350219H1173503561000	173057	58	H3	
17306132H317306317100017306329LNL17306464H317306864H317307078H3173071105H317307931H117307976LNL17308080H317307976LNL17307976LNL17307930H31734902013001734919176617349118130017349331.5H117349539H117349773H317349918130017349970H317349973H317349974H417350021H117350219H1173503561000	173059	29	H3	
17306317100017306329LNL17306464H317306864H317307078H3173071105H317307931H117307976LNL17307976LNL17308080H317307976LNL17307978H317308080H31734919176617349118130017349230H117349331.5H117349539H117349773H317349918130017349970H317349973H317349974H117349978H417350021H117350219H1173503561000	173060	27	Н3	
17306329LNL17306335H317306464H317306996H317307078H3173071105H3173078105H317307931H117307976LNL17307978H317307978H317307978H317307978H317308080H31734919176617349118130017349132H117349331.5H117349331.5H117349773H317349918130017349970H317349978H417350021H117350219H1173503561000	173061	32	H3	
17306335H317306464H317306864H317306996H317307078H3173071105H3173078105H317307931H117307976LNL17307978H317308080H317349020130017349032H11734919176617349131.5H117349230H117349331.5H117349539H117349777H317349918130017349970H317349978H417350021H117350219H117350219H1173503561000	173063	17	1000	
17306464H317306864H317306996H317307078H3173071105H3173078105H317307931H117307976LNL17307978H317308080H31734902013001734919176617349118130017349230H117349331.5H117349331.5H117349777H117349918130017349918130017349973H317349973H317349974H417350021H117350021H117350219H1173503561000	173063	29	LNL	
17306864H317306996H317307078H3173071105H3173078105H317307931H117307976LNL17307976LNL17307978H317308080H3173490201300173491917661734919176617349230H117349331.5H117349331.5H117349773H317349918130017349970H317349970H317349978H417350219H1173503561000	173063	35	H3	
17306996H317307078H3173071105H3173078105H317307931H117307976LNL17307978H317308080H31734902013001734919176617349132H117349230H117349331.5H117349539H117349773H317349918130017349970H317349978H417350021H117350219H1173503561000	173064	64	Н3	
17307078H3173071105H3173078105H317307931H117307976LNL17307978H317308080H317349020130017349032H11734919176617349118130017349331.5H117349331.5H117349539H117349777H317349918130017349970H317349970H317349978H417350021H117350219H1173503561000	173068	64	H3	
173071105H3173078105H317307931H117307976LNL17307978H317308080H317349020130017349032H11734919176617349118130017349331.5H117349331.5H117349539H117349777H117349918130017349918130017349970H317349978H417350021H117350219H1173503561000	173069	96	Н3	
173078105H317307931H117307976LNL17307978H317308080H317349020130017349032H11734919176617349118130017349132H117349230H117349331.5H117349539H117349777H117349918130017349970H317349970H317349978H417350021H117350219H1173503561000	173070	78	Н3	
17307931H117307976LNL17307978H317308080H317349020130017349032H11734919176617349132H117349230H117349331.5H117349737H117349773H317349918130017349970H317349978H417350021H117350219H1173503561000	173071	105	Н3	
17307976LNL17307978H317308080H317349020130017349032H11734919176617349118130017349132H117349230H117349331.5H117349539H117349773H317349918130017349970H317349970H317350021H117350219H1173503561000	173078	105	H3	
17307978H317308080H31734902013001734919176617349118130017349132H117349230H117349331.5H117349539H117349773H317349918130017349970H317350021H117350219H1173503561000	173079	31	H1	
17308080H317349020130017349032H11734919176617349118130017349132H117349230H117349331.5H117349539H117349773H317349918130017349970H317349978H417350021H117350219H1173503561000	173079	76	LNL	
17349020130017349032H11734919176617349118130017349132H117349230H117349331.5H117349539H117349773H317349918130017349970H317349978H417350021H1173503561000	173079	78	H3	
17349032H11734919176617349118130017349132H117349230H117349331.5H117349539H117349773H317349918130017349970H317349978H417350021H1173503561000	173080	80	H3	
1734919176617349118130017349132H117349230H117349331.5H117349539H117349737H117349773H317349918130017349970H317350021H117350219H1173503561000	173490	20	1300	
17349118130017349132H117349230H117349331.5H117349539H117349737H117349773H317349918130017349970H317350021H117350219H1173503561000	173490	32	H1	
17349132H117349230H117349331.5H117349539H117349737H117349773H317349918130017349970H317349978H417350021H117350219H1173503561000	173491	9		
17349230H117349331.5H117349539H117349737H117349773H317349918130017349970H317350021H117350219H1173503561000	173491	18	1300	
17349331.5H117349539H117349737H117349773H317349918130017349970H317350021H117350219H1173503561000	173491	32	H1	
17349539H117349737H117349773H317349918130017349970H317349978H417350021H117350219H1173503561000	173492			
17349737H117349773H317349918130017349970H317349978H417350021H117350219H1173503561000	173493	31.5	H1	
17349773H317349918130017349970H317349978H417350021H117350219H1173503561000	173495	39	H1	
17349918130017349970H317349978H417350021H117350219H1173503561000				
17349970H317349978H417350021H117350219H1173503561000	173497	73	H3	
17349978H417350021H117350219H1173503561000				
17350021H117350219H1173503561000				
17350219H1173503561000				
173503 56 1000				
173504 32.5 H1				
	173504	32.5	H1	

Core Number	Depth	Tephra
173504	44	LNS
173627	14.5	1766
173627	39	1300
173628	33.5	1300
173648	50	950
173652	15	1300
173652	23	H1
173653	35	H1
173653	52	950
173654	40	H1
173654	41	LNS
173654	42	H3
173655	55	H3
173657	34	H1
173658	13	1300
173659	28	H1
173661	19	1300
173661	27	H1
173662	28	H1
173663	33	H1
173664	39	H1
173664	66	Н3
173665	27	1300
173665	46	H1
173665	86	Н3
173666	38	H1
173667	42	H1
173668	38	H1
173673	104	950
173674	72	H3
173675	77	H3
173760	13	1300

Lower Keflavík: Excavation, Geophysical Prospection and Coring: Interim Report 2017

Table 3.	Stratigraphic layers in cores.

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
171815	0	5	Root Mat		
171815	5	50	Aeolian Deposit		
171815	50	65	Subsoil		
171816	0	40	Aeolian Deposit		
171816	0	40	Aeolian Deposit		
171816	40	45	Iron Pan		
171816	45	57	Aeolian Deposit		
171816	57	57	Rock		
171817	0	4	Root Mat		
171817	4	18	Aeolian Deposit		
171817	18	107	Turf		LNL/LNS
171817	107	110	Aeolian Deposit		
171817	110	110	Rock		
171818	0	4	Root Mat		
171818	4	12	Aeolian Deposit		
171818	12	87	Turf		H3/H4
171818	87	105	Aeolian Deposit		
171819	0	5	Root Mat		
171819	5	12	Aeolian Deposit		
171819	12	40	Turf		
171819	40	40	Rock		
171820	0	5	Root Mat		
171820	5	70	Turf		unknown
171820	70	78	Aeolian Deposit		
171820	78	95	Subsoil		
171820	95	95	Rock		
171821	0	5	Root Mat		
171821	5	95	Turf		
171821	95	95	Rock		
171822	0	6	Root Mat		

Lower Keflavík:	Excavation.	Geophysical	Prospection and	Coring: Interin	1 Report 2017

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
171822	6	59	Turf		
171822	59	85	Aeolian Deposit		
171822	85	85	Rock		
171823	0	8	Root Mat		
171823	8	42	Turf		
171823	42	57	Aeolian Deposit		
171823	57	57	Gravel		
171824	0	7	Root Mat		
171824	7	43	Turf		
171824	43	70	Subsoil		
171824	70	70	Gravel		
171825	0	7	Root Mat		
171825	7	64	Turf		H1
171825	64	64	Rock		
171826	0	7	Root Mat		
171826	7	70	Turf		
171826	70	85	Aeolian Deposit		
171827	0	6	Root Mat		
171827	6	35	Aeolian Deposit		
171827	35	79	Turf		
171827	79	102	Aeolian Deposit		
171827	102	104	Iron Pan		
171827	104	115	Aeolian Deposit		
171828	0	7	Root Mat		
171828	7	18	Aeolian Deposit		
171828	18	48	Aeolian Deposit		
171828	48	48	Gravel		
172525	0	5	Root Mat		
172525	5	40	Aeolian Deposit		
172525	40	50	Low Density		
172525	50	75	Midden		

Core Number		Bottom Depth	Category	Description	Tephra in Turf
172525	75	110	Aeolian Deposit		
172525	110	110	Rock		
172526	0	10	Root Mat		
172526	10	115	Turf		
172526	115	115	Iron Pan		
172527	0	10	Root Mat		
172527	10	30	Aeolian Deposit		
172527	30	35	Low Density		
172527	35	50	Aeolian Deposit		
172527	50	55	Gravel		
172527	55	60	Aeolian Deposit		
172527	60	63	Gravel		
172527	63	70	Aeolian Deposit		
172527	70	87	Cultural Layer		
172527	87	104	Subsoil		
172527	104	104	Gravel		
172528	0	10	Top Soil		
172528	10	75	Turf		LNL/LNS
172528	75	75	Iron Pan		
172529	0	8	Root Mat		
172529	8	65	Turf		H1
172529	65	115	Turf		LNL/LNS
172529	115	115	Iron Pan		
172530	0	10	Root Mat		
172530	10	72	Turf		H1
172530	72	115	Aeolian Deposit		
172530	115	115	Iron Pan		
172531	0	10	Top Soil		
172531	10	50	Turf		H1
172531	50	50	Rock		
172532	0	12	Top Soil		

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
172532	12	35	Turf		
172532	35	50	Aeolian Deposit		
172532	50	50	Rock		
172533	0	6	Root Mat		
172533	6	120	Turf		1000
172534	0	5	Root Mat		
172534	5	110	Turf		LNL/LNS
172534	110	115	Iron Pan		
172534	115	120	Turf		
172535	0	5	Root Mat		
172535	5	120	Turf		
172536	0	5	Root Mat		
172536	5	60	Turf		
172536	60	81	Midden		
172536	81	105	Turf		
172536	105	105	Iron Pan		
172537	0	6	Root Mat		
172537	6	62	Turf		
172537	62	70	Midden		
172537	70	120	Aeolian Deposit		
172538	0	5	Root Mat		
172538	5	91	Turf		
172538	91	95	Aeolian Deposit		
172538	95	97	Iron Pan		
172538	97	130	Aeolian Deposit		
172757	0	4	Root Mat		
172757	4	19	Aeolian Deposit		
172757	19	40	Turf		H1
172757	40	40	Rock		
172758	0	12	Root Mat		
172758	12	44	Turf		934

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
172758	44	59	Aeolian Deposit		
172758	59	62	Iron Pan		
172758	62	72	Aeolian Deposit		
172758	72	80	Iron Pan		
172758	80	80	Iron Pan		
172759	0	8	Root Mat		
172759	8	47	Turf		
172759	47	55	Low Density		
172759	55	62	Floor		
172759	62	70	Aeolian Deposit		
172759	70	70	Iron Pan		
172760	0	8	Root Mat		
172760	8	20	Aeolian Deposit		
172760	20	30	Gravel		
172760	30	52	Turf		934
172760	52	57	Iron Pan		
172760	57	80	Aeolian Deposit		
172761	0	8	Root Mat		
172761	8	30	Aeolian Deposit		
172761	30	60	Midden		
172761	60	65	Aeolian Deposit		
172761	65	65	Iron Pan		
172762	0	12	Root Mat		
172762	12	44	Turf		
172762	44	48	Midden		
172762	48	48	Aeolian Deposit		
172763	0	6	Root Mat		
172763	6	48	Turf		LNL/LNS
172763	48	55	Midden		
172763	55	55	Rock		
172764	0	8	Root Mat		

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
172764	8	78	Turf		LNL/LNS
172764	78	98	Aeolian Deposit		
172764	98	98	Rock		
172765	0	9	Root Mat		
172765	9	80	Turf		LNL/LNS
172765	80	95	Aeolian Deposit		
172765	95	100	Iron Pan		
172765	100	110	Aeolian Deposit		
172766	0	7	Root Mat		
172766	7	35	Turf	Collapse?	
172766	35	36	Cultural Layer	Thin, soft	
172766	36	102	Aeolian Deposit		
172766	102	102	Iron Pan		
172767	0	9	Root Mat		
172767	9	42	Turf		
172767	42	45	Cultural Layer	Floorish lens of charcoal (4mm) on ldc	
172767	45	56	Turf		LNL/LNS
172767	56	120	Aeolian Deposit		
172768	0	8	Root Mat		
172768	8	30	Aeolian Deposit	Mottled, turfy, mixed aeolian and collapse?	
172768	30	32	Low Density		
172768	32	102	Aeolian Deposit		
172768	102	102	Gravel		
172769	0	7	Root Mat		
172769	7	30	Aeolian Deposit		
172769	30	51	Turf		
172769	51	62	Aeolian Deposit		
172769	62	62	Gravel		
172770	0	10	Root Mat		
172770	10	95	Turf		LNL/LNS
172770	95	95	Rock		

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
172771	0	8	Root Mat		
172771	8	50	Turf		LNL/LNS
172771	50	50	Rock		
172778	0	6	Root Mat		
172778	6	40	Turf		
172778	40	59	Aeolian Deposit		
172778	59	59	Iron Pan		
172779	0	7	Root Mat		
172779	7	20	Turf		
172779	20	30	Low Density		
172779	30	50	Turf		
172779	50	59	Midden		
172779	59	61	Floor		
172779	61	80	Aeolian Deposit		
172779	80	85	Iron Pan		
172779	85	110	Aeolian Deposit		
172779	110	110	Iron Pan		
172780	0	6	Root Mat		
172780	6	65	Turf		H3/H4
172780	65	66	Midden		
172780	66	80	Low Density		
172780	80	80	Iron Pan		
172781	0	6	Root Mat		
172781	6	49	Turf		
172781	49	50	Midden		
172781	50	70	Aeolian Deposit		
172781	70	70	Gravel		
172782	0	6	Root Mat		
172782	6	40	Aeolian Deposit		LNL/LNS
172782	40	62	Aeolian Deposit	Mottled, irony	
172782	62	62	Rock		

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
172783	0	5	Root Mat		
172783	5	15	Aeolian Deposit		
172783	15	15	Rock		
172784	0	10	Root Mat		
172784	10	68	Aeolian Deposit		
172784	68	68	Iron Pan		
172785	0	7	Root Mat		
172785	7	40	Aeolian Deposit		
172785	40	80	Turf	Black tephra, Katla?	unknown
172785	80	110	Aeolian Deposit		
172805	0	10	Root Mat		
172805	10	33	Aeolian Deposit		
172805	33	64	Turf		H3/H4
172805	64	64	Rock		
172806	0	2	Root Mat		
172806	12	29	Aeolian Deposit		
172806	29	60	Turf		
172806	60	80	Iron Pan		
172807	0	6	Root Mat		
172807	6	47	Aeolian Deposit		
172807	47	47	Rock		
172808	0	12	Root Mat		
172808	12	40	Turf		None
172808	40	40	Rock		
172809	0	6	Root Mat		
172809	6	72	Turf		
172809	72	94	Aeolian Deposit		
172810	0	10	Root Mat		
172810	10	49	Aeolian Deposit		
172810	49	75	Turf		
172810	75	75	Iron Pan		

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
172811	0	12	Root Mat		
172811	12	36	Aeolian Deposit		
172811	36	49	Turf		
172811	49	59	Aeolian Deposit		
172811	59	66	Iron Pan		
172811	66	68	Aeolian Deposit		
172812	0	12	Root Mat		
172812	12	28	Aeolian Deposit		
172812	28	43	Floor		
172812	43	110	Turf		
172812	110	120	Aeolian Deposit		
172813	0	12	Root Mat		
172813	12	30	Aeolian Deposit		
172813	30	92	Turf		
172813	92	115	Aeolian Deposit		
172813	115	120	Iron Pan		
172814	0	12	Root Mat		
172814	12	50	Aeolian Deposit		
172814	50	50	Rock		
172815	0	12	Root Mat		
172815	12	110	Aeolian Deposit		
172815	110	110	Gravel		
172850	0	5	Root Mat		
172850	5	28	Aeolian Deposit		
172850	28	63	Turf		LNL/LNS
172850	63	63	Rock		
172851	0	6	Root Mat		
172851	6	90	Aeolian Deposit	Mottled below 40	
172851	90	90	Rock		
172852	0	6	Root Mat		
172852	6	18	Aeolian Deposit		

Lower Keflavík:	Excavation.	Geophysical	Prospection and	Coring: Interin	1 Report 2017

Core Number	Top Depth	Bottom Depth	Category	Descript	tion	Tephra in Turf
172852	18	18	Rock			
172853	0	6	Root Mat			
172853	6	30	Aeolian Deposit			
172853	30	47	Turf			
172853	47	61	Aeolian Deposit			
172853	61	61	Rock			
172854	0	5	Root Mat			
172854	5	56	Aeolian Deposit	Turfy		
172854	56	56	Rock			
172855	0	5	Root Mat			
172855	5	10	Aeolian Deposit			
172855	10	20	Turf	Burnt		
172855	20	36	Aeolian Deposit			
172855	36	36	Rock			
172856	0	5	Root Mat			
172856	5	60	Turf			H3/H4
172856	60	62	Aeolian Deposit			
172856	62	62	Rock			
172857	0	6	Root Mat			
172857	6	14	Aeolian Deposit			
172857	14	63	Aeolian Deposit			
172857	63	63	Iron Pan			
172858	0	6	Root Mat			
172858	6	37	Aeolian Deposit			
172858	37	37	Rock			
172859	0	6	Root Mat			
172859	6	54	Aeolian Deposit	Sheep bone at 43		
172859	54	54	Rock			
172860	0	7	Root Mat			
172860	7	62	Aeolian Deposit			
172860	62	62	Rock			

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
172861	0	7	Root Mat		
172861	7	25	Aeolian Deposit		
172861	25	25	Rock		
172862	0	5	Root Mat		
172862	5	18	Aeolian Deposit		
172862	18	61	Turf		LNL/LNS
172862	61	69	Aeolian Deposit		
172862	69	69	Iron Pan		
172863	0	8	Root Mat		
172863	8	28	Aeolian Deposit	Turfy	
172863	28	67	Aeolian Deposit		
172863	67	67	Iron Pan		
172864	0	7	Root Mat		
172864	7	69	Aeolian Deposit		
172864	69	78	Iron Pan		
172865	0	6	Root Mat		
172865	6	35	Aeolian Deposit		
172865	35	67	Turf		LNL/LNS
172865	67	69	Midden	Thin lens of white sand like burnt bone in charcoal	
172865	69	120	Aeolian Deposit		
172907	0	10	Root Mat		
172907	10	42	Aeolian Deposit		
172907	42	65	Turf		LNL/LNS
172907	65	80	Aeolian Deposit		
172907	80	80	Rock		
172908	0	10	Root Mat		
172908	10	36	Aeolian Deposit		
172908	36	38	Cultural Layer		
172908	38	45	Aeolian Deposit		
172908	45	60	Turf		
172908	60	78	Aeolian Deposit		

172908 78 78 Gravel 172909 0 10 Root Mat 172909 10 40 Aeolian Deposit 172909 40 61 Turf 934 172909 61 80 Aeolian Deposit 934 172909 80 80 Gravel 934 172910 0 12 Root Mat 934 172910 12 63 Turf 934 172910 80 80 Gravel 934 172910 80 80 Gravel 934 172911 0 10 Root Mat 934 172911 0 10 Root Mat 934 172911 50 53 Iron Pan 934 172911 50 53 Iron Pan 934 172912 0 15 Root Mat 934 172912 15 30 Isturbed 934 172912	Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
172909 10 40 Aeolian Deposit 934 172909 61 80 Aeolian Deposit 934 172909 61 80 Aeolian Deposit 934 172909 80 80 Gravel 934 172910 0 12 Rot Mat 934 172910 12 63 Turf 934 172910 80 80 Aeolian Deposit 934 172910 80 80 Gravel 934 172910 80 80 Gravel 934 172911 0 10 Rot Mat 934 172911 50 53 Ion Pan 934 172912 0 15 Rot Mat 934 172912 30 S5 Turf 934 172912 55 S9 Roelian Deposit 934 </td <td>172908</td> <td>78</td> <td>78</td> <td>Gravel</td> <td></td> <td></td>	172908	78	78	Gravel		
172909 40 61 Turf 934 172909 61 80 Acolian Deposit 172909 80 80 Gravel 172910 0 12 Rot Mat 172910 12 63 Turf 172910 63 80 Acolian Deposit 172910 63 80 Acolian Deposit 172911 0 10 Rot Mat 172911 0 50 Turf 172911 50 53 Iron Pan 172912 50 53 Iron Pan 172911 50 53 Iron Pan 172912 0 15 Rot Mat 172912 0 15 Rot Mat 172912 0 15 Rot Mat 172912 50 55 Turf 172912 50 10 Iron Pan 172912 50 80 Acolian Deposit 172912 50 10 Iron Pan 172912 50 10 Rot Mat <td>172909</td> <td>0</td> <td>10</td> <td>Root Mat</td> <td></td> <td></td>	172909	0	10	Root Mat		
172909 61 80 Aeolian Deposit 172909 80 80 Gravel 172910 0 12 Root Mat 172910 12 63 14 172910 63 80 Aeolian Deposit 172910 63 80 Aeolian Deposit 172910 63 80 Gravel 172911 0 10 Root Mat 172911 50 53 Iron Pan 172911 53 80 Aeolian Deposit 172912 15 80 Gravel 172912 15 80 Disturbed 172912 55 59 Iron Pan 172912 50 80 Gravel 172912 80 80 Gravel 172912 80 80 Gravel 172913 77 75 Gravel </td <td>172909</td> <td>10</td> <td>40</td> <td>Aeolian Deposit</td> <td></td> <td></td>	172909	10	40	Aeolian Deposit		
172909 80 63 60 Gravel 172910 0 12 Rot Mat 172910 12 63 7uf 172910 80 Rot Mat Face 172910 80 80 Gravel 172910 80 80 Gravel 172911 0 10 Rot Mat 172911 10 S0 Tuf 934 172911 50 S3 Iron Pan 934 172911 80 80 Gravel 934 172912 0 15 Rot Mat 934 172912 0 15 Rot Mat 934 172912 15 S0 Disturbed 934 172912 15 S5 Iron Pan 934 172912 55 S9 Iron Pan 934 172913 0 10 Rot Mat 934 172913 0 10 Rot Mat 934 172913 37 75 Acolian Deposit 934	172909	40	61	Turf		934
172910 0 12 Root Mat 172910 12 63 Turf 172910 63 80 Acolian Deposit 172910 80 80 Gravel 172911 0 10 Root Mat 172911 10 50 Turf 934 172911 50 53 Iron Pan 934 172912 63 80 Gravel 934 172913 80 80 Gravel 934 172914 80 80 Gravel 934 172912 0 15 Root Mat 934 172912 15 30 Disturbed 934 172912 30 55 Turf 934 172912 30 55 100 934 172912 30 S5 100 934 172912 59 80 Acolian Deposit 934 172913 0 10 Root Mat 934 172913 75 Acolian Deposit 934	172909	61	80	Aeolian Deposit		
172910 12 63 Turf 172910 63 80 Acolian Deposit 172910 80 80 Gravel 172911 0 10 Rot Mat 172911 10 50 Turf 934 172911 50 53 Iron Pan 934 172911 53 80 Acolian Deposit 934 172911 53 80 Acolian Deposit 934 172912 0 15 Rot Mat 934 172912 0 15 Rot Mat 934 172912 15 30 Disturbed 934 172912 15 59 Iron Pan 934 172912 15 59 Iron Pan 934 172912 59 80 Acolian Deposit 934 172912 10 10 Rot Mat 934 172913 10 10 Rot Mat 934 172913 37 75 Acolian Deposit 934 172914 10	172909	80	80	Gravel		
172910 63 80 Aeolian Deposit 172910 80 80 Gravel 172911 0 10 Rot Mat 172911 10 50 Turf 934 172911 50 53 Iron Pan 934 172911 53 80 Aeolian Deposit 934 172912 0 15 Rot Mat 934 172912 30 55 Turf 934 172912 30 55 Turf 934 172912 30 67avel 934 934 172913 37 75 Aeolian Deposit 934 172913 37 75 Aeolian Deposit 934 172913 75 Gravel 934 934 172914 0	172910	0	12	Root Mat		
172910 80 80 Gravel 172911 10 50 Tuf 934 172911 50 53 Iron Pan 934 172911 50 53 Iron Pan 934 172911 53 80 Acolian Deposit 934 172911 80 630 Gravel 934 172912 0 15 Rot Mat 934 172912 15 30 Disturbed 934 172912 30 55 Tuf 934 172912 55 59 Iron Pan 934 172912 55 59 Iron Pan 934 172912 59 80 Acolian Deposit 934 172913 0 10 Rote Mat 934 172913 37 75 Acolian Deposit 934 172913 37 75 Acolian Deposit 934 172913 37 75 Gravel 934 172914 0 10 Rot Mat 934	172910	12	63	Turf		
172911 0 10 Rot Mat 172911 10 50 Turf 934 172911 50 53 Iron Pan 1172911 172911 53 80 Acolian Deposit 1172912 172912 0 15 Rot Mat 1172912 172912 0 15 Rot Mat 1172912 172912 15 30 Disturbed 1172912 172912 55 59 Iron Pan 1172912 172912 55 59 Iron Pan 934 172912 59 80 Acolian Deposit 934 172913 0 10 Rot Mat 934 172913 37 75 Acolian Deposit 934 172913 37 75 Gravel 934 172913 37 75 Gravel 1172914 172914 10 78 Acolian Deposit 1172914 172914 78 Gravel 1172914 78 Rot Mat 172914 78 Rot	172910	63	80	Aeolian Deposit		
172911 10 50 Turf 934 172911 50 53 Iron Pan 172911 53 80 Aeolian Deposit 172911 80 80 Gravel 172912 0 15 Root Mat 172912 0 15 Root Mat 172912 15 30 Disturbed 172912 15 30 Disturbed 172912 55 Turf 16 172912 30 55 10 Pan 172912 55 59 Iron Pan 172912 59 80 Aeolian Deposit 172913 30 Gravel 172913 0 10 Root Mat 934 16 172913 10 37 11 934 172913 37 75 Aeolian Deposit 934 172914 10 10 Root Mat 11	172910	80	80	Gravel		
172911 50 53 Iron Pan 172911 53 80 Aeolian Deposit 172911 80 80 Gravel 172912 0 15 Root Mat 172912 15 30 Disturbed 172912 30 55 Tuf 172912 55 59 Iron Pan 172912 59 80 Aeolian Deposit 172912 80 80 Gravel 172913 0 10 Root Mat 172913 0 10 Root Mat 172913 75 Aeolian Deposit 934 172913 75 Gravel 934 172913 75 Gravel 934 172913 75 Gravel 934 172914 0 10 Root Mat 172914 10 78 Aeolian Deposit 172914 78 Root Mat 112914 172915 0 5 Root Mat 172915 5 80 Root Mat	172911	0	10	Root Mat		
172911 53 80 Aeolian Deposit 172911 80 80 Gravel 172912 0 15 Rot Mat 172912 15 30 Disturbed 172912 30 55 Turf 172912 55 59 Iron Pan 172912 59 80 Aeolian Deposit 172912 59 80 Aeolian Deposit 172913 0 10 Rot Mat 172913 0 10 Rot Mat 172913 37 75 Aeolian Deposit 172913 37 75 Gravel 172913 75 Gravel 934 172913 75 Gravel 934 172914 0 10 Rot Mat 172914 0 10 Rot Mat 172914 78 Aeolian Deposit 1172914 172914 78 Gravel 1172915 172915 0 5 Rot Mat 172915 5 87 Aeolian Deposit <td>172911</td> <td>10</td> <td>50</td> <td>Turf</td> <td></td> <td>934</td>	172911	10	50	Turf		934
172911 80 80 Gravel 172912 0 15 Root Mat 172912 15 30 Disturbed 172912 30 55 Turf 172912 55 59 Iron Pan 172912 59 80 Aeolian Deposit 172912 59 80 Gravel 172913 0 10 Root Mat 172913 0 10 Root Mat 172913 37 75 Aeolian Deposit 172913 37 75 Aeolian Deposit 172913 37 75 Aeolian Deposit 172913 75 Aeolian Deposit 934 172914 0 10 Root Mat 172914 0 10 Root Mat 172914 78 Gravel 1172914 172915 0 5 Root Mat 172915 5 87 Aeolian Deposit	172911	50	53	Iron Pan		
172912 0 15 Root Mat 172912 15 30 Disturbed 172912 30 55 Turf 172912 55 59 Iron Pan 172912 59 80 Aeolian Deposit 172912 60 60 Gravel 172913 0 10 Root Mat 172913 10 37 Turf 172913 37 75 Aeolian Deposit 172913 37 75 Aeolian Deposit 172913 37 75 Aeolian Deposit 172913 37 75 Gravel 172914 0 10 Root Mat 172914 0 10 Root Mat 172914 78 Aravel Interposit 172914 78 Root Mat Interposit 172915 0 5 Root Mat 172915 5 87 Aeolian Deposit	172911	53	80	Aeolian Deposit		
172912 15 30 55 Turf 172912 55 59 Iron Pan 172912 59 80 Acolian Deposit 172912 80 80 Gravel 172913 0 10 Root Mat 172913 10 37 Turf 934 172913 37 75 Acolian Deposit 934 172913 75 Gravel 934 934 172914 0 10 Root Mat 100 172914 10 78 Acolian Deposit 100 172914 78 Acolian Deposit 100 100 172914 78 Acolian Deposit 100 100 172915 0 5 Root Mat 100 172915 5 87 Acolian Deposit 100 172	172911	80	80	Gravel		
172912 30 55 Turf 172912 55 59 Iron Pan 172912 59 80 Aeolian Deposit 172912 80 80 Gravel 172913 0 10 Root Mat 172913 10 37 Turf 934 172913 37 75 Aeolian Deposit 172913 37 75 Aeolian Deposit 172913 75 75 Gravel 172914 0 10 Root Mat 172914 78 78 Gravel 172914 78 78 Gravel 172915 0 5 Root Mat 172915 5 87 Aeolian Deposit	172912	0	15	Root Mat		
172912 55 59 Ion Pan 172912 59 80 Aeolian Deposit 172912 80 80 Gravel 172913 0 10 Root Mat 172913 10 37 Turf 934 172913 37 75 Aeolian Deposit 934 172913 37 75 Gravel 172914 172914 0 10 Root Mat 172914 172914 10 78 Aeolian Deposit 172914 172914 78 78 Gravel 172915 172915 0 5 80 Mat 172915 172915 5 87 Aeolian Deposit 172915	172912	15	30	Disturbed		
172912 59 80 Aeolian Deposit 172912 80 80 Gravel 172913 0 10 Rot Mat 172913 10 37 Turf 934 172913 37 75 Aeolian Deposit 172913 172913 37 75 Aeolian Deposit 172914 172914 0 10 Rot Mat 1172914 172914 10 78 Aeolian Deposit 1172914 172914 78 78 Gravel 1172914 172915 0 5 Rot Mat 1172915 172915 5 87 Aeolian Deposit 1172915	172912	30	55	Turf		
1729128080Gravel172913010Root Mat1729131037Turf1729133775Aeolian Deposit1729137575Gravel172914010Root Mat1729141078Aeolian Deposit17291505Root Mat172915587172915587	172912	55	59	Iron Pan		
172913010Root Mat9341729131037Turf9341729133775Aeolian Deposit10172914010Root Mat101729141078Aeolian Deposit101729147878Gravel1017291505Root Mat10172915587Aeolian Deposit10	172912	59	80	Aeolian Deposit		
1729131037Turf9341729133775Aeolian Deposit1729137575Gravel172914010Root Mat1729141078Aeolian Deposit1729147878Gravel17291505Root Mat172915587Aeolian Deposit10	172912	80	80	Gravel		
1729133775Aeolian Deposit1729137575Gravel172914010Root Mat1729141078Aeolian Deposit1729147878Gravel17291505Root Mat172915587Aeolian Deposit	172913	0	10	Root Mat		
1729137575Gravel172914010Root Mat1729141078Aeolian Deposit1729147878Gravel17291505Root Mat172915587Aeolian Deposit	172913	10	37	Turf		934
172914010Root Mat1729141078Aeolian Deposit1729147878Gravel17291505Root Mat172915587Aeolian Deposit	172913	37	75	Aeolian Deposit		
172914 10 78 Aeolian Deposit 172914 78 78 Gravel 172915 0 5 Root Mat 172915 5 87 Aeolian Deposit	172913	75	75	Gravel		
172914 78 78 Gravel 172915 0 5 Root Mat 172915 5 87 Aeolian Deposit	172914	0	10	Root Mat		
172915 0 5 Root Mat 172915 5 87 Aeolian Deposit	172914	10	78	Aeolian Deposit		
172915 5 87 Aeolian Deposit	172914	78	78	Gravel		
·	172915	0	5	Root Mat		
172915 87 87 Gravel	172915	5	87	Aeolian Deposit		
	172915	87	87	Gravel		

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
172916	0	12	Root Mat		
172916	12	47	Aeolian Deposit		
172916	47	55	Midden		
172916	55	80	Turf		934
172916	80	80	Iron Pan		
172917	0	10	Root Mat		
172917	10	45	Aeolian Deposit		
172917	45	120	Turf		934
172918	0	10	Root Mat		
172918	10	37	Turf	Burnt	
172918	37	42	Floor		
172918	42	43	Diatoms		
172918	43	71	Aeolian Deposit		
172918	71	72	Iron Pan		
172918	72	78	Aeolian Deposit		
172918	78	78	Gravel		
172919	0	10	Root Mat		
172919	10	40	Aeolian Deposit		
172919	40	63	Turf	Burnt	
172919	63	67	Floor		
172919	67	120	Aeolian Deposit		
172920	0	12	Root Mat		
172920	12	46	Turf	Burnt	
172920	46	49	Floor		
172920	49	120	Aeolian Deposit		
172921	0	10	Root Mat		
172921	10	27	Aeolian Deposit		
172921	27	46	Turf	Burnt	
172921	46	48	Floor		
172921	48	67	Low Density		
172921	67	120	Aeolian Deposit		

Lower Keflavík:	Excavation,	Geophysical	Prospection and	Coring: 1	nterim Report 2017

Core Number	Top Depth	Bottom Depth	Category		Description	Tephra in Turf
172922	0	12	Root Mat			
172922	12	20	Aeolian Deposit			
172922	20	51	Turf	Burnt		
172922	51	52	Floor			
172922	52	70	Disturbed			
172922	70	71	Iron Pan			
172922	71	73	Aeolian Deposit			
172922	73	73	Iron Pan			
172923	0	12	Root Mat			
172923	12	35	Turf	Burnt		
172923	35	36	Floor			
172923	36	60	Disturbed			
172923	60	69	Aeolian Deposit			
172923	69	69	Iron Pan			
172924	0	10	Root Mat			
172924	10	65	Turf			
172924	65	80	Aeolian Deposit			
172924	80	80	Gravel			
172925	0	10	Root Mat			
172925	10	30	Aeolian Deposit			
172925	30	68	Turf			
172925	68	79	Aeolian Deposit			
172925	79	79	Gravel			
172926	0	10	Root Mat			
172926	10	40	Aeolian Deposit			
172926	40	55	Turf			
172926	55	56	Midden			
172926	56	75	Aeolian Deposit			
172926	75	75	Iron Pan			
172927	0	10	Root Mat			
172927	10	65	Turf			

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
172927	65	78	Aeolian Deposit		
172927	78	78	Iron Pan		
172991	0	5	Root Mat		
172991	5	64	Aeolian Deposit	Burnt bone at 51	
172991	64	64	Rock		
173034	0	3	Root Mat		
173034	3	90	Turf	1000 kind of green, could be LNL, but not as green as we'd	1000
173034	90	120	Aeolian Deposit		
173035	0	10	Root Mat		
173035	10	18	Aeolian Deposit		
173035	18	30	Turf	Burnt	H1
173035	30	46	Aeolian Deposit		
173035	46	48	Low Density		
173035	48	60	Aeolian Deposit		
173035	60	60	Rock		
173036	0	9	Root Mat		
173036	9	39	Turf		LNL/LNS
173036	39	40	Midden		
173036	40	67	Aeolian Deposit		
173036	67	67	Rock		
173037	0	5	Root Mat		
173037	5	68	Aeolian Deposit	Mottled	
173037	68	68	Gravel		
173057	0	5	Root Mat		
173057	5	48	Turf	Burnt	LNL/LNS
173057	48	76	Aeolian Deposit		
173057	76	76	Rock		
173058	0	7	Root Mat		
173058	7	29	Aeolian Deposit		
173058	29	31	Low Density		
173058	31	52	Aeolian Deposit		

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
173058	52	52	Rock		
173059	0	6	Root Mat		
173059	6	30	Aeolian Deposit		
173059	30	40	Subsoil		
173059	40	40	Rock		
173060	0	4	Root Mat		
173060	4	25	Aeolian Deposit		
173060	25	45	Subsoil		
173060	45	45	Rock		
173061	0	5	Root Mat		
173061	5	33	Aeolian Deposit	Turfy	
173061	33	40	Subsoil		
173061	40	40	Rock		
173062	0	2	Root Mat		
173062	2	85	Turf		H1
173062	85	85	Rock		
173063	0	6	Root Mat		
173063	6	40	Aeolian Deposit		
173063	40	57	Subsoil		
173063	57	57	Gravel		
173064	0	6	Root Mat		
173064	6	64	Turf	Tephra gray green thin line	unknown
173064	64	66	Aeolian Deposit		
173064	66	66	Rock		
173065	0	6	Root Mat		
173065	6	46	Turf		LNL/LNS
173065	46	46	Rock		
173066	0	4	Root Mat		
173066	4	120	Turf		LNL/LNS
173067	0	6	Root Mat		
173067	6	68	Turf		

Core Number	Top Depth	Bottom Depth	Category		Description	Tephra in Turf
173067	68	78	Midden			
173067	78	120	Aeolian Deposit	Mottled		
173068	0	65	Aeolian Deposit			
173068	65	65	Rock			
173069	0	5	Root Mat			
173069	5	90	Turf			LNL/LNS
173069	90	108	Aeolian Deposit			
173070	0	5	Root Mat			
173070	5	52	Turf	Collapsy		LNL/LNS
173070	52	55	Midden			
173070	55	76	Low Density	Turfy mix		
173070	76	110	Aeolian Deposit			
173071	0	5	Root Mat			
173071	5	81	Turf			LNL/LNS
173071	81	120	Aeolian Deposit			
173077	0	10	Root Mat			
173077	10	110	Turf			
173077	110	110	Iron Pan			
173078	0	10	Root Mat			
173078	10	105	Turf			
173078	105	120	Aeolian Deposit			
173079	0	12	Root Mat			
173079	12	35	Aeolian Deposit			
173079	35	52	Turf			
173079	52	65	Midden			
173079	65	70	Turf			
173079	70	81	Aeolian Deposit			
173079	81	81	Iron Pan			
173080	0	12	Root Mat			
173080	12	52	Aeolian Deposit			
173080	52	60	Midden			

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
173080	60	90	Aeolian Deposit		
173080	90	90	Iron Pan		
173081	0	12	Root Mat		
173081	12	47	Turf		
173081	47	56	Midden		
173081	56	83	Turf		LNL/LNS
173081	83	83	Iron Pan		
173490	0	5	Root Mat		
173490	5	42	Aeolian Deposit		
173490	42	42	Rock		
173491	0	5	Root Mat		
173491	5	45	Aeolian Deposit		
173491	45	45	Gravel		
173492	0	10	Root Mat		
173492	10	55	Aeolian Deposit		
173493	0	7	Root Mat		
173493	7	35	Aeolian Deposit		
173493	35	70	Turf		H3/H4
173493	70	70	Rock		
173494	0	6	Root Mat		
173494	6	28	Aeolian Deposit		
173494	28	34	Midden		
173494	34	40	Low Density		
173494	40	40	Rock		
173495	0	5	Root Mat		
173495	5	25	Aeolian Deposit		
173495	25	39	Midden		
173495	39	45	Aeolian Deposit		
173495	45	65	Turf		
173495	65	83	Aeolian Deposit		
173495	83	83	Rock		

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
173496	0	7	Root Mat		
173496	7	29	Aeolian Deposit		
173496	29	70	Turf		H1
173496	70	80	Subsoil		
173496	80	80	Gravel		
173497	0	6	Root Mat		
173497	6	25	Aeolian Deposit		
173497	25	35	Turf	Burnt	
173497	35	41	Floor		
173497	41	45	Aeolian Deposit		
173497	45	60	Turf		H3/H4
173497	60	73	Aeolian Deposit		
173497	73	90	Subsoil		
173498	0	8	Root Mat		
173498	8	25	Aeolian Deposit		
173498	25	40	Turf		
173499	0	5	Root Mat		
173499	5	22	Aeolian Deposit		
173499	22	68	Turf		H1
173499	68	81	Aeolian Deposit		
173499	81	97	Subsoil		
173500	0	10	Root Mat		
173500	10	40	Aeolian Deposit		
173500	40	75	Turf		
173500	65	66	Midden		
173500	66	68	Aeolian Deposit		
173500	68	70	Iron Pan		
173500	70	120	Aeolian Deposit		
173501	0	6	Root Mat		
173501	6	30	Aeolian Deposit		
173501	30	40	Turf	Burnt	

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
173501	40	54	Turf		
173501	54	55	Floor		
173501	55	74	Aeolian Deposit		
173501	74	74	Gravel		
173502	0	10	Root Mat		
173502	10	29	Aeolian Deposit		
173502	29	31	Midden		
173502	31	40	Aeolian Deposit		
173503	0	9	Root Mat		
173503	9	20	Aeolian Deposit		
173503	20	35	Turf	Burnt	
173503	35	42	Turf		
173503	42	52	Aeolian Deposit		
173503	52	52	Rock		
173504	0	5	Root Mat		
173504	5	20	Aeolian Deposit		
173504	20	26	Midden		
173504	26	48	Aeolian Deposit		
173505	0	12	Root Mat		
173505	12	28	Aeolian Deposit		
173505	28	28	Rock		
173506	0	8	Root Mat		
173506	8	25	Aeolian Deposit		
173506	25	48	Turf	Burnt	
173506	48	53	Floor		
173506	53	65	Aeolian Deposit		
173506	65	65	Rock		
173627	0	9	Root Mat		
173627	9	68	Bog		
173627	68	68	Rock		
173628	0	8	Root Mat		

ore Number	Top Depth	Bottom Depth	Category		Description	Tephra in Turf
173628	8	40	Bog			
173648	0	6	Root Mat			
173648	6	20	Aeolian Deposit			
173648	20	37	Turf	Burnt		H3/H4
173648	37	44	Floor			
173648	44	50	Aeolian Deposit			
173648	50	51.5	Floor			
173648	51.5	65	Aeolian Deposit			
173648	65	65	Rock			
173649	0	5	Root Mat			
173649	5	20	Aeolian Deposit			
173649	20	45	Turf	Burnt		
173649	45	45	Rock			
173650	0	7	Root Mat			
173650	7	35	Aeolian Deposit			
173650	35	40	Turf			
173650	40	45	Aeolian Deposit			
173650	45	45	Rock			
173651	0	6	Root Mat			
173651	6	28	Aeolian Deposit			
173651	28	32	Turf			
173651	32	41	Aeolian Deposit			
173651	41	41	Rock			
173652	0	10	Root Mat			
173652	10	15	Aeolian Deposit			
173652	15	25	Aeolian Deposit			
173652	25	45	Turf			
173652	45	49	Aeolian Deposit			
173652	49	53	Midden			
173653	0	7	Root Mat			
173653	7	29	Aeolian Deposit			

Lower Keflavík: Excavation, Geo	ophysical Prospection an	d Coring: Interim Report 2017
---------------------------------	--------------------------	-------------------------------

Core Number	Top Depth	Bottom Depth	Category		Description	Tephra in Turf
173653	29	35	Turf			
173653	35	40	Aeolian Deposit			
173653	40	52	Midden	Dark		
173653	52	62	Aeolian Deposit			
173654	0	7	Root Mat			
173654	7	22	Aeolian Deposit			
173654	22	27	Low Density			
173654	27	35	Turf			
173654	35	53	Aeolian Deposit			
173654	53	71	Subsoil			
173654	71	71	Gravel			
173655	0	6	Root Mat			
173655	6	35	Aeolian Deposit			
173655	35	38	Turf			
173655	38	40	Midden			
173655	40	45	Low Density			
173655	45	60	Aeolian Deposit			
173656	0	8	Root Mat			
173656	8	19	Aeolian Deposit			
173656	19	26	Midden			
173656	26	35	Turf			
173656	35	45	Aeolian Deposit	Boggy		
173656	45	71	Aeolian Deposit			
173657	0	6	Root Mat			
173657	6	43	Aeolian Deposit			
173657	43	55	Midden			
173657	55	56	Aeolian Deposit			
173657	56	56	Rock			
173658	0	5	Root Mat			
173658	5	52	Aeolian Deposit			
173658	52	52	Rock			

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
173659	0	5	Root Mat		
173659	5	58	Aeolian Deposit		
173659	58	58	Rock		
173660	0	5	Root Mat		
173660	5	56	Aeolian Deposit		
173660	56	56	Rock		
173661	0	7	Root Mat		
173661	7	40	Aeolian Deposit		
173661	40	50	Turf		
173661	50	60	Aeolian Deposit		
173661	60	62	Subsoil		
173661	62	62	Rock		
173662	0	7	Root Mat		
173662	7	38	Aeolian Deposit		
173662	38	68	Turf		
173662	68	68	Rock		
173663	0	8	Root Mat		
173663	8	30	Aeolian Deposit		
173663	30	34	Turf		
173663	34	40	Aeolian Deposit		
173663	40	59	Turf		
173663	59	70	Aeolian Deposit		
173663	70	72	Subsoil		
173664	0	7	Root Mat		
173664	7	30	Aeolian Deposit		
173664	30	37	Midden		
173664	37	44	Aeolian Deposit		
173664	44	60	Turf		
173664	60	66	Aeolian Deposit		
173664	66	67	Subsoil		
173664	67	67	Rock		

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
173665	0	7	Root Mat		
173665	7	29	Aeolian Deposit		
173665	29	43	Turf		
173665	43	50	Aeolian Deposit		
173665	50	56	Turf		
173665	56	87	Aeolian Deposit		
173665	87	95	Subsoil		
173666	0	8	Root Mat		
173666	8	34	Aeolian Deposit		
173666	34	36	Midden		
173666	36	60	Aeolian Deposit		
173666	60	60	Rock		
173667	0	8	Root Mat		
173667	8	36	Aeolian Deposit		
173667	36	40	Midden		
173667	40	46	Aeolian Deposit		
173667	46	60	Turf		
173667	60	75	Aeolian Deposit		
173667	75	75	Rock		
173668	0	8	Root Mat		
173668	8	24	Aeolian Deposit		
173668	24	32	Turf		H1
173668	32	40	Aeolian Deposit		
173668	40	59	Turf		
173668	59	65	Aeolian Deposit		
173668	65	65	Rock		
173669	0	7	Root Mat		
173669	7	25	Aeolian Deposit		
173669	25	28	Midden		
173669	28	40	Turf		H1
173669	40	46	Aeolian Deposit		

Lower Keflavík:	Excavation,	Geophysical	Prospection and	Coring: In	nterim Report 2017

Core Number	Top Depth	Bottom Depth	Category		Description	Tephra in Turf
173669	46	67	Turf			
173669	67	71	Aeolian Deposit			
173669	71	71	Rock			
173670	0	8	Root Mat			
173670	8	19	Aeolian Deposit			
173670	19	60	Turf	Burnt		
173670	60	60	Rock			
173671	0	6	Root Mat			
173671	6	23	Aeolian Deposit			
173671	23	31	Midden			
173671	31	37	Aeolian Deposit			
173671	37	44	Turf			
173671	44	44	Gravel			
173672	0	6	Root Mat			
173672	6	26	Aeolian Deposit			
173672	26	40	Turf	Burnt		
173672	40	47	Turf			
173672	47	65	Midden			
173672	65	73	Aeolian Deposit			
173673	0	5	Root Mat			
173673	5	34	Aeolian Deposit			
173673	34	94	Turf			934
173673	94	104	Midden			
173673	104	112	Aeolian Deposit			
173674	0	6	Root Mat			
173674	6	35	Aeolian Deposit			
173674	35	59	Turf			
173674	59	72	Aeolian Deposit			
173674	72	91	Subsoil			
173675	0	7	Root Mat			
173675	7	19	Aeolian Deposit			

Lower Keflavík:	Excavation,	Geophysical	Prospection and	l Coring:	Interim Report 2017

Core Number	Top Depth	Bottom Depth	Category	Description	Tephra in Turf
173675	19	57	Turf		
173675	57	80	Aeolian Deposit		
173675	80	86	Subsoil		
173676	0	6	Root Mat		
173676	6	26	Aeolian Deposit		
173676	26	43	Turf		
173676	43	43	Rock		
173759	0	7	Root Mat		
173759	7	28	Aeolian Deposit		
173759	28	51	Floor		
173759	51	66	Turf		
173759	66	69	Floor		
173759	69	71	Aeolian Deposit		
173759	71	73	Floor		
173759	73	110	Aeolian Deposit		
173760	0	10	Root Mat		
173760	10	30	Aeolian Deposit		
173760	30	50	Turf		H1
173760	50	57	Aeolian Deposit		
173760	57	69	Midden		
173760	69	70	Aeolian Deposit		
173760	70	70	Rock		

Table 4. Finds list

Farm	Place	Artifact	DESCRIPTION		ID	DATE
		Number				
Garður	Hegranesþing	2017-12-1	Worked iron - nail?	106	RSS	08/02/2017
Garður	Hegranesþing	2017-12-2	4 metal pieces in screen, 1 by hand	106	KWS	08/02/2017
Garður	Hegranesþing	2017-12-3	Possible rivet	107	TLP	08/02/2017
Garður	Hegranesþing	2017-12-5	Fragment	111	GMC	08/03/2017
Garður	Hegranesþing	2017-12-6	Worked bone	111	TLP	08/03/2017
Garður	Hegranesþing	2017-12-7	Worked bone, similar to find 6 and possibly from the same object maybe a comb sheath	111	RSS	08/03/2017
Garður	Hegranesþing	2017-12-9	In screen - comb fragment in screen	112	RSS	08/03/2017
Garður	Hegranesþing	2017-12-11	In screen - comb fragment in screen	111	RSS	08/03/2017